1
|
Gholami M, Sadegh M, Koroush-Arami M, Norouzi S, Arismani RJ, Asadi E, Amini M, Khodayari N. Targeting memory loss with aspirin, a molecular mechanism perspective for future therapeutic approaches. Inflammopharmacology 2023; 31:2827-2842. [PMID: 37924473 DOI: 10.1007/s10787-023-01347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
Acetylsalicylic acid (ASA), also known as aspirin, was discovered in 1897 as an acetylated form of salicylate. It has been widely used for its anti-inflammatory and antiplatelet effects. It is commonly used for its cardiovascular benefits and is prescribed as secondary prophylaxis after a heart attack. Furthermore, low-dose, long-term ASA is used to reduce the risk of heart attack and stroke in individuals without prior cardiovascular disease. Acetylsalicylic acid acts as a non-selective inhibitor of cyclooxygenase (COX), which inhibits the synthesis of prostaglandins and prevents pro-inflammatory cytokines. Findings suggest that targeting cytokines and growth factors could be a potential therapeutic strategy for reducing neuroinflammation and slowing down the progression of dementia. Additionally, prostaglandins contribute to synaptic plasticity and can act as retrograde messengers in synapses. Research has implicated COX-1, one of the isoforms of the enzyme, in neuroinflammation and neurodegenerative disorders. The inhibition of COX-1 might potentially prevent impairments in working memory and reduce neuroinflammation caused by beta-amyloid proteins in some conditions, such as Alzheimer's disease (AD). Cyclooxygenase-2, an inducible form of the enzyme, is expressed in cortical and hippocampal neurons and is associated with long-term synaptic plasticity. The inhibition or knockout of COX-2 has been shown to decrease long-term potentiation, a process involved in memory formation. Studies have also demonstrated that the administration of COX-2 inhibitors impairs cognitive function and memory acquisition and recall in animal models. There remains a debate regarding the effects of aspirin on dementia and cognitive decline. Although some studies suggest a possible protective effect of non-steroidal anti-inflammatory drugs, including aspirin, against the development of AD, others have shown inconsistent evidence. This review provides an overview of the effects of ASA or its active metabolite salicylate on learning, memory, and synaptic plasticity.
Collapse
Affiliation(s)
- Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mehdi Sadegh
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Masoumeh Koroush-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Rasoul Jafari Arismani
- Department of Urologic Surgery, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Erfan Asadi
- Medical Student, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Amini
- Medical Student, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nahid Khodayari
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Ishaq S, Ahmed T. Sexually Dimorphic Effects of Neuromodulatory Drugs on Normal and Stress-Induced Social Interaction in Rats. Brain Sci 2023; 13:1378. [PMID: 37891747 PMCID: PMC10604924 DOI: 10.3390/brainsci13101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Social behavior is a complex term which involves different interactions between various individuals of a community. It is controlled by different neurotransmitter systems in a sexually dimorphic way. Certain environmental factors, like stress, cause various neurological disorders with associated social abnormalities in a sexually dimorphic way. Multiple drugs are used in clinical settings to treat behavioral disorders. However, the sexually dimorphic effects of these drugs, particularly on social behavior, still need to be studied. The present study was designed to investigate the sex-dependent effects of Risperidone, Donepezil, and Paroxetine in 8-12 weeks old male and female rats under normal and stressed conditions. There were four male and four female groups, i.e., control group (no drug treatment), Risperidone (3 mg/kg/day) treated group, Donepezil (5 mg/kg/day) treated group, and Paroxetine (10 mg/kg/day) treated group. Each group received its respective drug during phase 1 for 21 days, followed by a 10-day break with no drug treatment. After the break, same groups received the same drugs along with tilt-cage stress for an additional 21 days during phase 2. A social preference and novelty test was performed at the end of both phases (1 and 2). During phase 1, Risperidone treatment caused impaired social behavior and reduced locomotion in the male group only, compared to its control group. Donepezil treatment caused a reduction in social interaction, while Paroxetine treatment caused increased social interaction and locomotion in a sex-dependent manner. During phase 2, social novelty was affected in both male and female stress groups. Treatment with drugs along with stress showed differential sex-dependent effects. The study showed a predominant effect of Risperidone on males while there were differential effects of Donepezil and Paroxetine on both sexes. This study has paved the way for the development of more targeted and effective neuromodulatory drugs for use against various psychiatric and social deficits.
Collapse
Affiliation(s)
- Sara Ishaq
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Vergil Andrews JF, Selvaraj DB, Kumar A, Roshan SA, Anusuyadevi M, Kandasamy M. A Mild Dose of Aspirin Promotes Hippocampal Neurogenesis and Working Memory in Experimental Ageing Mice. Brain Sci 2023; 13:1108. [PMID: 37509038 PMCID: PMC10376986 DOI: 10.3390/brainsci13071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Aspirin has been reported to prevent memory decline in the elderly population. Adult neurogenesis in the hippocampus has been recognized as an underlying basis of learning and memory. This study investigated the effect of aspirin on spatial memory in correlation with the regulation of hippocampal neurogenesis and microglia in the brains of ageing experimental mice. Results from the novel object recognition (NOR) test, Morris water maze (MWM), and cued radial arm maze (cued RAM) revealed that aspirin treatment enhances working memory in experimental mice. Further, the co-immunohistochemical assessments on the brain sections indicated an increased number of doublecortin (DCX)-positive immature neurons and bromodeoxyuridine (BrdU)/neuronal nuclei (NeuN) double-positive newly generated neurons in the hippocampi of mice in the aspirin-treated group compared to the control group. Moreover, a reduced number of ionized calcium-binding adaptor molecule (Iba)-1-positive microglial cells was evident in the hippocampus of aspirin-treated animals. Recently, enhanced activity of acetylcholinesterase (AChE) in circulation has been identified as an indicative biomarker of dementia. The biochemical assessment in the blood of aspirin-treated mice showed decreased activity of AChE in comparison with that of the control group. Results from this study revealed that aspirin facilitates hippocampal neurogenesis which might be linked to enhanced working memory.
Collapse
Affiliation(s)
- Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Akshay Kumar
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
4
|
Hammad AM, Alhusban AA, Alzaghari LF, Alasmari F, Sari Y. Effect of Cigarette Smoke Exposure and Aspirin Treatment on Neurotransmitters’ Tissue Content in Rats’ Hippocampus and Amygdala. Metabolites 2023; 13:metabo13040515. [PMID: 37110173 PMCID: PMC10145483 DOI: 10.3390/metabo13040515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cigarette smoke withdrawal can cause anxiety-like behavior and modulate neurotransmitter-related proteins in the brain. We examined the effects of cigarette smoke with and without aspirin treatment on the concentrations of neurotransmitters, including dopamine, serotonin, glutamate, glutamine, and GABA in the amygdala and hippocampus. Sprague-Dawley rats were randomly assigned to four different groups: (1) control group exposed only to standard room air, (2) cigarette smoke exposed group treated with saline vehicle, (3) cigarette smoke exposed group treated with aspirin (30 mg/kg), and (4) control group treated only with aspirin (30 mg/kg). Cigarette smoke exposure was performed for 2 h/day, 5 days/week, for 31 days. Behavioral testing was carried out weekly, 24 h after cigarette smoke exposure, during acute withdrawal. At the end of week 4, rats were given either distilled water (1 mL) or aspirin 45 min before cigarette exposure for 11 days. Dopamine, serotonin, glutamate, glutamine, and GABA were extracted from both the amygdala and hippocampus and were separated and quantified using a developed and validated HPLC-MS/MS method. Cigarette smoke withdrawal induced anxiety behaviors, and aspirin treatment reduced this effect. Cigarette smoke exposure increased tissue content of dopamine, serotonin, glutamate, glutamine, and GABA, and aspirin treatment reversed this effect. Cigarette smoke caused an increase in tissue content of several neurotransmitters as well as anxiety-like behavior, and these effects were normalized by aspirin treatment.
Collapse
Affiliation(s)
- Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ala A. Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lujain F. Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
5
|
Díaz A, Flores I, Treviño S. Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regen Res 2023; 18:51-56. [PMID: 35799508 PMCID: PMC9241392 DOI: 10.4103/1673-5374.331867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aging is a global phenomenon and a complex biological process of all living beings that introduces various changes. During this physiological process, the brain is the most affected organ due to changes in its structural and chemical functions, such as changes in plasticity and decrease in the number, diameter, length, and branching of dendrites and dendritic spines. Likewise, it presents a great reduction in volume resulting from the contraction of the gray matter. Consequently, aging can affect not only cognitive functions, including learning and memory, but also the quality of life of older people. As a result of the phenomena, various molecules with notable neuroprotective capacity have been proposed, which provide a therapeutic alternative for people under conditions of aging or some neurodegenerative diseases. It is important to indicate that in recent years the use of molecules with neurotrophic activity has shown interesting results when evaluated in in vivo models. This review aims to describe the neurotrophic potential of molecules such as resveratrol (3,5,4′-trihydroxystilbene), neurotrophins (brain-derived neurotrophic factor), and neurotrophic-type compounds such as the terminal carboxyl domain of the heavy chain of tetanus toxin, cerebrolysin, neuropeptide-12, and rapamycin. Most of these molecules have been evaluated by our research group. Studies suggest that these molecules exert an important therapeutic potential, restoring brain function in aging conditions or models of neurodegenerative diseases. Hence, our interest is in describing the current scientific evidence that supports the therapeutic potential of these molecules with active neurotrophic.
Collapse
|
6
|
Mirza FJ, Zahid S. Ursolic acid and rosmarinic acid ameliorate alterations in hippocampal neurogenesis and social memory induced by amyloid beta in mouse model of Alzheimer's disease. Front Pharmacol 2022; 13:1058358. [PMID: 36618920 PMCID: PMC9817136 DOI: 10.3389/fphar.2022.1058358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by substantial neuronal damage which manifests in the form of deficits in memory and cognition. In spite of the debilitating nature of Alzheimer's disease (AD), a dearth of treatment strategies calls for the need to develop therapeutic agents that stimulate neurogenesis and alleviate the associated cognitive deficits. The present study investigates the therapeutic potential of two major phytochemicals, rosmarinic acid (RA) and ursolic acid (UA) in an amyloid beta1-42 (Aβ1-42)-induced model of AD. UA, a natural pentacyclic triterpenoid and RA, a phenolic ester are major bioactive constituents of Rosmarinus officinalis, which is a medicinal herb belonging to family Lamiaceae and exhibiting significant biological properties including neuroprotection. Donepezil, a second generation cholinesterase inhibitor approved for the treatment of mild, moderate and severe Alzheimer's disease (AD) is used as control. Out of eight groups of male BALB/c mice, stereotaxic surgery was performed on four groups (n = 6 each) to introduce Aβ1-42 in the hippocampus followed by treatment with vehicle (phosphate-buffered saline (PBS)), donepezil, UA or RA. The other four groups were given vehicle, donepezil, UA and RA only. Behavior analysis for social interaction was performed which constitutes the social affiliation and the social novelty preference test. Presence of Aβ plaques and expression of neurogenesis markers i.e., doublecortin (DCX) and Ki-67 were also assessed. Results revealed the neuroprotective effect of UA and RA observed through substantial reduction in Aβ plaques as compared to the Aβ1-42- and donepezil-treated groups. The neuronal density was also restored as evident via DCX and Ki-67 immunoreactivity in Aβ1-42 + RA and Aβ1-42+UA-treated groups in comparison to Aβ1-42-treated and Aβ1-42+donepezil-treated groups. The social affiliation was reestablished in the Aβ1-42 administered groups treated with UA and RA. Molecular docking studies further validated the comparable binding of UA and RA with Ki-67 and DCX to that of donepezil. Our findings suggest that UA and RA are potential neuroprotective compounds that reverses the histological hallmarks of AD and ameliorate impaired social memory and hippocampal neurogenesis.
Collapse
|
7
|
Guan PP, Ding WY, Wang P. Molecular mechanism of acetylsalicylic acid in improving learning and memory impairment in APP/PS1 transgenic mice by inhibiting the abnormal cell cycle re-entry of neurons. Front Mol Neurosci 2022; 15:1006216. [PMID: 36263378 PMCID: PMC9575964 DOI: 10.3389/fnmol.2022.1006216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder accompanied by the loss and apoptosis of neurons. Neurons abnormally enter the cell cycle, which results in neuronal apoptosis during the course of AD development and progression. However, the mechanisms underlying cell cycle re-entry have been poorly studied. Using neuroblastoma (N) 2aSW and APP/PS1 transgenic (Tg) mice as in vitro and in vivo AD models, we found that the expression of cyclin-dependent kinase (CDK)1/2/4 and cyclin A2/B1/D3/E1 was increased while the protein expression of p18 and p21 was decreased, which led to enhanced cell cycle re-entry in a β-amyloid protein (Aβ)-dependent mechanism. By preparing and treating with the temperature-sensitive chitosan-encapsulated drug delivery system (CS), the abnormal expression of CDK1/2/4, cyclin A2/B1/D3/E1 and p18/21 was partially restored by acetylsalicylic acid (ASA), which decreased the apoptosis of neurons in APP/PS1 Tg mice. Moreover, CDK4 and p21 mediated the effects of ASA on activating transcription factor (TF) EB via peroxisome proliferator-activated receptor (PPAR) α, thus leading to the uptake of Aβ by astrocytes in a low-density lipoprotein receptor (Ldlr)-dependent mechanism. Moreover, the mechanisms of Aβ-degrading mechanisms are activated, including the production of microtubule-associated protein light chain (LC) 3II and Lamp2 protein by ASA in a PPARα-activated TFEB-dependent manner. All these actions contribute to decreasing the production and deposition of Aβ, thus leading to improved cognitive decline in APP/PS1 Tg mice.
Collapse
|
8
|
Holden S, Perez R, Hall R, Fallgren CM, Ponnaiya B, Garty G, Brenner DJ, Weil MM, Raber J. Effects of Acute and Chronic Exposure to a Mixed Field of Neutrons and Photons and Single or Fractionated Simulated Galactic Cosmic Ray Exposure on Behavioral and Cognitive Performance in Mice. Radiat Res 2021; 196:31-39. [PMID: 33857301 PMCID: PMC8297553 DOI: 10.1667/rade-20-00228.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
During space missions, astronauts experience acute and chronic low-dose-rate radiation exposures. Given the clear gap of knowledge regarding such exposures, we assessed the effects acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure (GCRsim) on behavioral and cognitive performance in mice. In addition, we assessed the effects of an aspirin-containing diet in the presence and absence of chronic exposure to a mixed field of neutrons and photons. In C3H male mice, there were effects of acute radiation exposure on activity levels in the open field containing objects. In addition, there were radiation-aspirin interactions for effects of chronic radiation exposure on activity levels and measures of anxiety in the open field, and on activity levels in the open field containing objects. There were also detrimental effects of aspirin and chronic radiation exposure on the ability of mice to distinguish the familiar and novel object. Finally, there were effects of acute GCRsim on activity levels in the open field containing objects. Activity levels were lower in GCRsim than sham-irradiated mice. Thus, acute and chronic irradiation to a mixture of neutrons and photons and acute and fractionated GCRsim have differential effects on behavioral and cognitive performance of C3H mice. Within the limitations of our study design, aspirin does not appear to be a suitable countermeasure for effects of chronic exposure to space radiation on cognitive performance.
Collapse
Affiliation(s)
- Sarah Holden
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Ruby Perez
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Reed Hall
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Christina M. Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Brian Ponnaiya
- Columbia University Center for Radiological Research, New York, New York 10032
| | - Guy Garty
- Columbia University Center for Radiological Research, New York, New York 10032
| | - David J. Brenner
- Columbia University Center for Radiological Research, New York, New York 10032
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
9
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
10
|
Abstract
Mounting evidence has identified that impaired amyloid-β (Aβ) clearance might contribute to Alzheimer's disease (AD) pathology. The lysosome-autophagy network plays an important role in protein homeostasis and cell health by removing abnormal protein aggregates via intracellular degradation. Therefore, stimulation of cellular degradative machinery for efficient removal of Aβ has emerged as a growing field in AD research. However, mechanisms controlling such pathways and drugs to promote such mechanisms are poorly understood. Aspirin is a widely used drug throughout the world and recent studies have identified a new function of this drug. At low doses, aspirin stimulates lysosomal biogenesis and autophagy to clear amyloid plaques in an animal model of AD. This review delineates such functions of aspirin and analyzes underlying mechanisms that involve peroxisome proliferator-activated receptor alpha (PPARα)-mediated transcription of transcription factor EB (TFEB), the master regulator of lysosomal biogenesis.
Collapse
Affiliation(s)
- Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Dhruv R Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
High-Dose Aspirin Reverses Tartrazine-Induced Cell Growth Dysregulation Independent of p53 Signaling and Antioxidant Mechanisms in Rat Brain. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9096404. [PMID: 31032366 PMCID: PMC6457281 DOI: 10.1155/2019/9096404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
Abstract
Tartrazine, an azo dye used in food, cosmetics, and pharmaceuticals with the effects on cell cycle, is not well understood. Therefore, we investigated the toxicity of tartrazine in rat brain with high-dose aspirin. Male Wistar rats (n = 24) were divided into (C) control, (T) tartrazine (700 mg/kg body weight [BW] at weeks 1 and 2), (A) aspirin (150 mg/kg [BW] at weeks 1, 2, and 3), and (TA) aspirin + tartrazine (150 mg/kg [BW] aspirin at weeks 1, 2, and 3 and 700 mg/kg [BW] tartrazine at weeks 1 and 2) groups. The expression of p53, B cell lymphoma-2 extra-large (Bcl-xL), cyclin-dependent kinase 2 (CDK2), p27, and Ki67 was evaluated by quantitative reverse-transcription PCR. A histopathological analysis of brain tissue and oxidative stress level was assessed based on reduced glutathione (GSH), ascorbic acid (AA), and malondialdehyde levels. We found that Bcl-xL, Ki67, CDK2, and p27 were upregulated and p53 was downregulated in the tartrazine-treated group as compared to the control group. Aspirin administration reversed these changes except P53 expression. Tartrazine had no effect on lipid peroxidation but altered AA and GSH levels with no reversal by aspirin treatment. Histopathological analysis revealed that aspirin prevented tartrazine-induced damage including increased perivascular space and hemorrhage. These results indicate that aspirin protects the brain from tartrazine-induced toxicity independent of p53 signaling and antioxidant mechanisms.
Collapse
|
12
|
Aspirin Induces Lysosomal Biogenesis and Attenuates Amyloid Plaque Pathology in a Mouse Model of Alzheimer's Disease via PPARα. J Neurosci 2018; 38:6682-6699. [PMID: 29967008 DOI: 10.1523/jneurosci.0054-18.2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/03/2023] Open
Abstract
Lysosomes play a central role in cellular homeostasis by regulating the cellular degradative machinery. Because aberrant lysosomal function has been associated with multiple lysosomal storage and neurodegenerative disorders, enhancement of lysosomal clearance has emerged as an attractive therapeutic strategy. Transcription factor EB (TFEB) is known as a master regulator of lysosomal biogenesis and, here, we reveal that aspirin, one of the most widely used medications in the world, upregulates TFEB and increases lysosomal biogenesis in brain cells. Interestingly, aspirin induced the activation of peroxisome proliferator-activated receptor alpha (PPARα) and stimulated the transcription of Tfeb via PPARα. Finally, oral administration of low-dose aspirin decreased amyloid plaque pathology in both male and female 5X familial Alzheimer's disease (5XFAD) mice in a PPARα-dependent fashion. This study reveals a new function of aspirin in stimulating lysosomal biogenesis via PPARα and suggests that low-dose aspirin may be used in lowering storage materials in Alzheimer's disease and lysosomal storage disorders.SIGNIFICANCE STATEMENT Developing drugs for the reduction of amyloid β containing senile plaques, one of the pathological hallmarks of Alzheimer's disease (AD), is an important area of research. Aspirin, one of the most widely used medications in the world, activates peroxisome proliferator-activated receptor alpha (PPARα) to upregulate transcription factor EB and increase lysosomal biogenesis in brain cells. Accordingly, low-dose aspirin decreases cerebral plaque load in a mouse model of Alzheimer's disease via PPARα. These results reveal a new mode of action of aspirin that may be beneficial for AD and lysosomal storage disorders.
Collapse
|