1
|
Chen S, Wang Y, Wu H, Fang X, Wang C, Wang N, Xie L. Research hotspots and trends of microRNAs in intervertebral disc degeneration: a comprehensive bibliometric analysis. J Orthop Surg Res 2023; 18:302. [PMID: 37061725 PMCID: PMC10105931 DOI: 10.1186/s13018-023-03788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are involved in various pathological processes, such as proliferation, growth, and apoptosis, of intervertebral disc (IVD) cells and play an important role in the development of intervertebral disc degeneration (IDD). Although some studies have reported the role of miRNAs in IDD, scientific econometric analysis in this field is not available. OBJECTIVES We designed this study to describe the current research trends and potential mechanisms associated with the role of miRNAs in IDD and to provide new ideas for future research in this field. METHODS We conducted a bibliometric analysis of the publications on the role of miRNAs in IDD included in the Web of Science core collection database to elucidate the current research trends in this field. The potential mechanisms were constructed using the Arrowsmith project. RESULTS We found that the number of miRNAs and IDD-related publications increased over the years. China was the most important contributor to research in this field. The top three institutions in terms of number of articles published were Huazhong University of Science and Technology, Shanghai Jiao Tong University, and Xi'an Jiao Tong University. Shanghai Jiao Tong University had the highest number of citations. Experimental and thermal medicine had the maximum number of documents, and Cell promotion had the most citations. The journal with the most mean times cited per study was Annals of the Rheumatic Diseases. The author Wang K had the highest number of publications, and Wang HQ had the highest number of citations. These two authors made important contributions to the research in this field. The keyword analysis showed that recent studies have focused on miRNAs regulating nucleus pulposus cell apoptosis and proliferation. Moreover, we revealed the potential mechanisms of miRNAs associated with IDD, including miRNAs regulating the extracellular matrix (ECM) degradation, mediating cartilage endplate (CEP) degeneration, and participating in inflammatory responses. CONCLUSION We demonstrated the knowledge map of miRNAs and IDD-related research through bibliometric analysis and elucidated the current research status and hotspots in this field. The mechanisms by which miRNAs regulate the apoptosis and proliferation of degenerated IVDs, promote ECM degradation, mediate CEP degeneration, and participate in inflammatory responses should be explored in further studies.
Collapse
Affiliation(s)
- Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanxi Wu
- The Second Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyang Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenyu Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Shi X, Tian S, Tian Y. Experimental study of miR-503 regulating the activity as well as the function of degenerated human nucleus pulposus cells of the intervertebral disc through inhibiting Wnt pathway. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:131-144. [PMID: 36856108 PMCID: PMC9976174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVES To preliminarily explore miR-503 in human degenerative disc nucleus pulposus cell effects as well as mechanisms. METHODS We utilized bioinformatics analysis to determine the miRNA differential expression as well as key signal pathways existing in human nucleus pulposus cells of the degenerative intervertebral discs. Human degenerative disc nucleus pulposus cell model was cultured and established in vitro. miR-503 and TNIK-related genes are knocked down and overexpressed by lentiviral infection, then we added Wnt signaling pathway agonists; CCK-8, ELISA, RT-PCR, Western blot were used to detect proliferation, apoptosis, and activity of cells. RESULTS Bioinformatics results demonstrated that miR-503 was significantly down-regulated in human nucleus pulposus cells of the degenerated intervertebral discs. The targeted differentially expressed genes were mainly enriched in Wnt signaling pathway. However, after screening differential genes in the Wnt pathway, it was demonstrated that miR-503 mainly regulates TNIK to achieve Wnt pathway regulation. Cell experiments in vitro showed that cell activity and function were decreased while apoptosis was increased in the degenerative cell model. CONCLUSIONS miR-503 can improve the function and activity of human nucleus pulposus cells of degenerated intervertebral disc by inhibiting Wnt expression. miR-503 mainly regulates the Wnt pathway through targeted binding with TNIK.
Collapse
Affiliation(s)
- Xiaoming Shi
- Orthopedics First ward, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital of Southern Medical University, P.R. China
| | - Shaohua Tian
- Orthopedics Second ward, The Third Affiliated Hospital of Qiqihar Medical College, P.R. China
| | - Yinan Tian
- Neurology Second ward, The Third Affiliated Hospital of Qiqihar Medical College, P.R. China
| |
Collapse
|
3
|
Li W, Zhao Y, Wang Y, He Z, Zhang L, Yuan B, Li C, Luo Z, Gao B, Yan M. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome. Front Immunol 2023; 14:1090637. [PMID: 36817437 PMCID: PMC9929188 DOI: 10.3389/fimmu.2023.1090637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a chronic inflammatory disease with intricate connections between immune infiltration and oxidative stress (OS). Complex cell niches exist in degenerative intervertebral disk (IVD) and interact with each other and regulate the disk homeostasis together. However, few studies have used longitudinal approach to describe the immune response of IDD progression. Here, we conducted conjoint analysis of bulk-RNA sequencing and single-cell sequencing, together with a series of techniques like weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, and differential analysis, to systematically decipher the difference in OS-related functions of different cell populations within degenerative IVD tissues, and further depicted the longitudinal alterations of immune cells, especially monocytes/macrophages in the progression of IDD. The OS-related genes CYP1A1, MMP1, CCND1, and NQO1 are highly expressed and might be diagnostic biomarkers for the progression of IDD. Further landscape of IVD microenvironment showed distinct changes in cell proportions and characteristics at late degeneration compared to early degeneration of IDD. Monocytes/macrophages were classified into five distinct subpopulations with different roles. The trajectory lineage analysis revealed transcriptome alterations from effector monocytes/macrophages and regulatory macrophages to other subtypes during the evolution process and identified monocytes/macrophage subpopulations that had rapidly experienced the activation of inflammatory or anti-inflammatory responses. This study further proposed that personalized therapeutic strategies are needed to be formulated based on specific monocyte/macrophage subtypes and degenerative stages of IDD.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Linyuan Zhang
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an, Shaanxi, China
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
4
|
Abstract
MicroRNA-210 (miR-210) is a miRNA with imperative effects in the pathophysiology of human disorders. miR-210 is encoded by MIR210 gene on chromosome 11p15.5. The stem-loop of this miRNA resides in an intron of the AK123483 noncoding RNA. This miRNA is a major hypoxamir whose expression is increased in hypoxic condition in several types of cells. miR-210 has been shown to be up-regulated in almost all types of examined cancer types, except for bladder cancer, angiosarcoma and glioblastoma. Dysregulation of miR-210 in colorectal carcinoma, gastric cancer, head and neck squamous cell carcinoma, pediatric acute lymphoblastic leukemia, glioblastoma and laryngeal carcinoma has been related with poor clinical outcomes. In the current review, we provide a comprehensive summary of participation of miR-210 in human disorders.
Collapse
|
5
|
Montemurro N, Ricciardi L, Scerrati A, Ippolito G, Lofrese G, Trungu S, Stoccoro A. The Potential Role of Dysregulated miRNAs in Adolescent Idiopathic Scoliosis and 22q11.2 Deletion Syndrome. J Pers Med 2022; 12:1925. [PMID: 36422101 PMCID: PMC9695868 DOI: 10.3390/jpm12111925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/29/2023] Open
Abstract
Background: Adolescent idiopathic scoliosis (AIS), affecting 2-4% of adolescents, is a multifactorial spinal disease. Interactions between genetic and environmental factors can influence disease onset through epigenetic mechanisms, including DNA methylation, histone modifications and miRNA expression. Recent evidence reported that, among all clinical features in individuals with 22q11.2 deletion syndrome (DS), scoliosis can occur with a higher incidence than in the general population. Methods: A PubMed and Ovid Medline search was performed for idiopathic scoliosis in the setting of 22q11.2DS and miRNA according to PRISMA guidelines. Results: Four papers, accounting for 2841 individuals, reported clinical data about scoliosis in individuals with 22q11.2DS, showing that approximately 35.1% of the individuals with 22q11.2DS developed scoliosis. Conclusions: 22q11.2DS could be used as a model for the study of AIS. The DGCR8 gene seems to be essential for microRNA biogenesis, which is why we propose that a possible common pathological mechanism between scoliosis and 22q11.2DS could be the dysregulation of microRNA expression. In the current study, we identified two miRNAs that were altered in both 22q11.2DS and AIS, miR-93 and miR-1306, thus, corroborating the hypothesis that the two diseases share common molecular alterations.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Luca Ricciardi
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Alba Scerrati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Ippolito
- Istituto Chirurgico Ortopedico Traumatologico (ICOT), DSBMC Sapienza Università di Roma-Polo Pontino, 04100 Latina, Italy
| | - Giorgio Lofrese
- Division of Neurosurgery, Ospedale Bufalini, 47023 Cesena, Italy
| | - Sokol Trungu
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
6
|
miR-328-5p Induces Human Intervertebral Disc Degeneration by Targeting WWP2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3511967. [PMID: 36211818 PMCID: PMC9537005 DOI: 10.1155/2022/3511967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Intervertebral disc degeneration (IDD) development is regulated by miRNA, including inflammatory reactions, cell apoptosis, and degradation of extracellular matrix. Nucleus pulposus cells apoptosis has a absolute influence in the development of IDD. This experiment explores the mechanism of miR-328-5p regulating IDD. Through the analysis of miRNA and mRNA microarray database, we screened the target genes miR-328-5p and WWP2. We verified the expression of miR-328-5p, WWP2, and related apoptotic genes in normal and degenerative nucleus pulposus tissues by qRT-PCR. The expressions of WWP2, Bcl-2, and Bax were detected by qRT-PCR and western blot after transfection to nucleus pulposus cell. The nucleus pulposus cell proliferation and apoptosis after transfection were confirmed by CCK8 and flow cytometry. Luciferase reporter assay and bioinformatics analyzed the targeting relationship between miR-328-5p and WWP2. Firstly, the qRT-PCR experiments confirmed the significant increase of miR-328-5p expression, while significant reduction of WWP2 in a degenerative tissues compared to the normal tissues. Surprisingly, miR-328-5p expression was positively, while that of WWP2 negatively correlated with the degeneration grade of IDD. And we also identified the high expression of Bax and Caspase3, while low expression of Bcl-2 in a degenerative tissues. After miR-328-5p mimic transfected into nucleus pulposus cell, qRT-PCR and western blot confirmed that WWP2 and Bcl-2 expressions were downregulated, while Bax and Caspase3 expressions were upregulated, and the same results were obtained by knocking down WWP2. CCK8 and flow cytometry confirmed that miR-328-5p inhibited the proliferation and induced apoptosis of nucleus pulposus cells. WWP2 is a target gene of miR-328-5p by bioinformatics and luciferase reporter assay. In summary, miR-328-5p targets WWP2 to regulate nucleus pulposus cells apoptosis and then participates in the development of IDD. Furthermore, this study may provide new references and ideas for IDD treatment.
Collapse
|
7
|
Wang C, Cui L, Gu Q, Guo S, Zhu B, Liu X, Li Y, Liu X, Wang D, Li S. The Mechanism and Function of miRNA in Intervertebral Disc Degeneration. Orthop Surg 2022; 14:463-471. [PMID: 35142050 PMCID: PMC8926997 DOI: 10.1111/os.13204] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IDD) disease has been considered as the main cause of low back pain (LBP), which is a very common symptom and the leading cause of disability worldwide today. The pathological mechanism of IDD remains quite complicated, and genetic, developmental, biochemical, and biomechanical factors all contribute to the development of the disease. There exists no effective, non-surgical treatment for IDD nowadays, which is largely related to the lack of knowledge of the specific mechanisms of IDD, and the lack of effective specific targets. Recently, non-coding RNA, including miRNA, has been recognized as an important regulator of gene expression. Current studies on the effects of miRNA in IDD have confirmed that a variety of miRNAs play a crucial role in the process of IDD via nucleus pulposus cells (NPC) apoptosis, abnormal proliferation, inflammatory factors, the extracellular matrix (ECM) degradation, and annulus fibrosus (AF) degeneration. In the past 10 years, research on miRNA has been quite active in IDD. This review summarizes the current research progression of miRNA in the IDD and puts forward some prospects and challenges on non-surgical treatment for IDD.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Liqiang Cui
- Department of Spine Surgery, Mianyang Orthopaedic Hospital, Mianyang, China
| | - Qinwen Gu
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Ohnishi T, Iwasaki N, Sudo H. Causes of and Molecular Targets for the Treatment of Intervertebral Disc Degeneration: A Review. Cells 2022; 11:cells11030394. [PMID: 35159202 PMCID: PMC8834258 DOI: 10.3390/cells11030394] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a pathological condition that can lead to intractable back pain or secondary neurological deficits. There is no fundamental cure for this condition, and current treatments focus on alleviating symptoms indirectly. Numerous studies have been performed to date, and the major strategy for all treatments of IVDD is to prevent cell loss due to programmed or regulated cell death. Accumulating evidence suggests that several types of cell death other than apoptosis, including necroptosis, pyroptosis, and ferroptosis, are also involved in IVDD. In this study, we discuss the molecular pathway of each type of cell death and review the literature that has identified their role in IVDD. We also summarize the recent advances in targeted therapy at the RNA level, including RNA modulations through RNA interference and regulation of non-coding RNAs, for preventing cell death and subsequent IVDD. Therefore, we review the causes and possible therapeutic targets for RNA intervention and discuss the future direction of this research field.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence:
| |
Collapse
|
9
|
The Regulatory Effect of MicroRNA-101-3p on Disc Degeneration by the STC1/VEGF/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1073458. [PMID: 34650661 PMCID: PMC8510813 DOI: 10.1155/2021/1073458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023]
Abstract
Aims. Accumulating evidence reported that the microRNA (miRNA) took an important role in intervertebral disc degeneration (IDD). In this study, we revealed a novel miRNA regulatory mechanism in IDD. Main Methods. The miRNA microarray analyses of human degenerated and normal disc samples were employed to screen out the target miRNA. In vitro and in vivo experiments were conducted to verify the regulatory effect of miR-101-3p. Key Findings. The expression level of miR-101-3p was significantly decreased in the degenerated disc samples which were confirmed by qRT-PCR. Moreover, the miR-101-3p expression level was changed dynamically according to the disc degeneration grade. Upregulation of miR-101-3p expression level inhibited cell apoptosis. Furthermore, stanniocalcin-1 (STC1) was selected to be the target gene of miR-101-3p according to the bioinformatic algorithms. Mechanically, upregulation of miR-101-3p significantly decreased the expression of STC1, vascular endothelial growth factor (VEGF), and MAPK pathway expression levels. Therapeutically, in vivo experiment on IDD rat model illustrated that agomir-101-3p could effectively suspend IDD. Significance. Our findings demonstrated that miR-101-3p alleviated IDD process through the STC1/VEGF/MAPK pathway.
Collapse
|
10
|
Yang F, Wang J, Chen Z, Yang Y, Zhang W, Guo S, Yang Q. Role of microRNAs in intervertebral disc degeneration (Review). Exp Ther Med 2021; 22:860. [PMID: 34178133 PMCID: PMC8220656 DOI: 10.3892/etm.2021.10292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
The incidence of lower back pain caused by intervertebral disc degeneration (IDD) is gradually increasing. IDD not only affects the quality of life of the patients, but also poses a major socioeconomic burden. There is currently no optimal method for delaying or reversing IDD, mainly due to its unknown pathogenesis. MicroRNAs (miRNAs/miRs) participate in the development of a number of diseases, including IDD. Abnormal expression of miRNAs in the intervertebral disc is implicated in various pathological processes underlying the development of IDD, including nucleus pulposus (NP) cell (NPC) proliferation, NPC apoptosis, extracellular matrix remodeling, inflammation and cartilaginous endplate changes, among others. The focus of the present review was the advances in research on the involvement of miRNAs in the mechanism underlying IDD. Further research is expected to identify markers for early diagnosis of IDD and new targets for delaying or reversing IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jizu Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhixin Chen
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yuping Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wenhui Zhang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shifang Guo
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qingshan Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
11
|
Xue J, Hu B, Xing W, Li F, Huang Z, Zheng W, Wang B, Zhu Y, Yang X. Low expression of miR-142-3p promotes intervertebral disk degeneration. J Orthop Surg Res 2021; 16:55. [PMID: 33446250 PMCID: PMC7809750 DOI: 10.1186/s13018-020-02194-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/28/2020] [Indexed: 12/03/2022] Open
Abstract
Background Intervertebral disk degeneration (IDD) is a degenerative disease characterized by cytoplasm loss and extracellular matrix degradation. Numerous evidence reported that miRNAs participated in IDD development. Nevertheless, the function of miR-142-3p in IDD development remains unknown. This study mainly explored the potential role and function of miR-142-3p in IDD development. Methods One percent fetal bovine serum was used to induce the degeneration of ATDC5 cells, and miR-142-3p level was examined by qRT-PCR. Then, miR-142-3p mimic/inhibitor and its corresponding negative control were transfected into ATDC5 normal and degenerative cells. Viability, migration, invasion, apoptosis, cycle, Bax, Bcl-2, P62, and Beclin1 expression levels were assessed using CCK8, wound healing assay, annexin V-FITC/PI staining, western blot, and qRT-PCR, respectively. Results The results revealed that the expression levels of MMP13, ADAMTS5, MMP3, and Col-X were increased as well as the expression levels of SOX-9 and Col-II were reduced in ATDC5 degenerative cells, indicating the degeneration model was constructed. We observed that miR-142-3p was decreased in ATDC5 degenerative cells and its suppression could promote ATDC5 cell degeneration. However, miR-142-3p overexpression could reverse the cell viability inhibition, as well as apoptosis and autophagy enhancement in ATDC5 degenerative cells. Conclusions Our results proved that miR-142-3p may play an important role in disk degeneration. Further animal study is needed to illustrate the role of the miR-142-3p in IDD development. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02194-4.
Collapse
Affiliation(s)
- Jianmin Xue
- Graduate School of Inner Mongolia Medical University, Hohhot City, 010059, Inner Mongolia, China.,Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China
| | - Baoyang Hu
- Graduate School of Inner Mongolia Medical University, Hohhot City, 010059, Inner Mongolia, China.,Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China
| | - Wenhua Xing
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China
| | - Feng Li
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China
| | - Zhi Huang
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China
| | - Wenkai Zheng
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China
| | - Bo Wang
- Graduate School of Inner Mongolia Medical University, Hohhot City, 010059, Inner Mongolia, China.,Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China
| | - Yong Zhu
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China.
| | - Xuejun Yang
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, No. 1 Yingfang Road, Hohhot City, 010059, Inner Mongolia, China.
| |
Collapse
|
12
|
Zhang XB, Hu YC, Cheng P, Zhou HY, Chen XY, Wu D, Zhang RH, Yu DC, Gao XD, Shi JT, Zhang K, Li SL, Song PJ, Wang KP. Targeted therapy for intervertebral disc degeneration: inhibiting apoptosis is a promising treatment strategy. Int J Med Sci 2021; 18:2799-2813. [PMID: 34220308 PMCID: PMC8241771 DOI: 10.7150/ijms.59171] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a multifactorial pathological process associated with low back pain (LBP). The pathogenesis is complicated, and the main pathological changes are IVD cell apoptosis and extracellular matrix (ECM) degradation. Apoptotic cell loss leads to ECM degradation, which plays an essential role in IDD pathogenesis. Apoptosis regulation may be a potential attractive therapeutic strategy for IDD. Previous studies have shown that IVD cell apoptosis is mainly induced by the death receptor pathway, mitochondrial pathway, and endoplasmic reticulum stress (ERS) pathway. This article mainly summarizes the factors that induce IDD and apoptosis, the relationship between the three apoptotic pathways and IDD, and potential therapeutic strategies. Preliminary animal and cell experiments show that targeting apoptotic pathway genes or drug inhibition can effectively inhibit IVD cell apoptosis and slow IDD progression. Targeted apoptotic pathway inhibition may be an effective strategy to alleviate IDD at the gene level. This manuscript provides new insights and ideas for IDD therapy.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Honghui Hospital, Xi'an, Shanxi, 710000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng Cheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ding Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Shao-Long Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng-Jie Song
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
13
|
Wang XQ, Tu WZ, Guo JB, Song G, Zhang J, Chen CC, Chen PJ. A Bioinformatic Analysis of MicroRNAs' Role in Human Intervertebral Disc Degeneration. PAIN MEDICINE 2020; 20:2459-2471. [PMID: 30953590 DOI: 10.1093/pm/pnz015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives The aim of our study was to ascertain the underlying role of microRNAs (miRNAs) in human intervertebral disc degeneration (IDD). Design Bioinformatic analysis from multiple databases. Methods Studies of the association of miRNAs and IDD were identified in multiple electronic databases. All potential studies were assessed by the same inclusion and exclusion criteria. We recorded whether miRNA expression was commonly increased or suppressed in the intervertebral disc tissues and cells of IDD subjects. We used String to identify biological process and cellular component pathways of differentially expressed genes. Results We included fifty-seven articles from 1,277 records in this study. This report identified 40 different dysregulated miRNAs in 53 studies, including studies examining cell apoptosis (26 studies, 49.06%), cell proliferation (15 studies, 28.3%), extracellular matrix (ECM) degradation (10 studies, 18.86%), and inflammation (five studies, 9.43%) in IDD patients. Three upregulated miRNAs (miR-19b, miR-32, miR-130b) and three downregulated miRNAs (miR-31, miR-124a, miR-127-5p) were considered common miRNAs in IDD tissues. The top three biological process pathways for upregulated miRNAs were positive regulation of biological process, nervous system development, and negative regulation of biological process, and the top three biological process pathways for downregulated miRNAs were negative regulation of gene expression, intracellular signal transduction, and negative regulation of biological process. Conclusions This study revealed that miRNAs could be novel targets for preventing IDD and treating patients with IDD by regulating their target genes. These results provide valuable information for medical professionals, IDD patients, and health care policy makers.
Collapse
Affiliation(s)
- Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Wen-Zhan Tu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juan Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Piazza N, Dehghani M, Gaborski TR, Wuertz-Kozak K. Therapeutic Potential of Extracellular Vesicles in Degenerative Diseases of the Intervertebral Disc. Front Bioeng Biotechnol 2020; 8:311. [PMID: 32363187 PMCID: PMC7181459 DOI: 10.3389/fbioe.2020.00311] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane particles carrying proteins, lipids, DNA, and various types of RNA that are involved in intercellular communication. EVs derived from mesenchymal stem cells (MSCs) have been investigated extensively in many different fields due to their crucial role as regeneration drivers, but research for their use in degenerative diseases of the intervertebral disc (IVD) has only started recently. MSC-derived EVs not only promote extracellular matrix synthesis and proliferation in IVD cells, but also reduce apoptosis and inflammation, hence having multifunctional beneficial effects that seem to be mediated by specific miRNAs (such as miR-233 and miR-21) within the EVs. Aside from MSC-derived EVs, IVD-derived EVs (e.g., stemming from notochordal cells) also have important functions in IVD health and disease. This article will summarize the current knowledge on MSC-derived and IVD-derived EVs and will highlight areas of future research, including the isolation and analysis of EV subpopulations or exposure of MSCs to cues that may enhance the therapeutic potential of released EVs.
Collapse
Affiliation(s)
- Nathan Piazza
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, United States
| | - Mehdi Dehghani
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, United States
| | - Thomas R. Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, United States
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, United States
- Institute for Biomechanics, Zurich, Switzerland
- Spine Center, Schön Clinic Munich Harlaching, Munich, Germany
- Academic Teaching Hospital and Spine Research Institute, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
15
|
Penolazzi L, Lambertini E, Bergamin LS, Roncada T, De Bonis P, Cavallo M, Piva R. MicroRNA-221 silencing attenuates the degenerated phenotype of intervertebral disc cells. Aging (Albany NY) 2019; 10:2001-2015. [PMID: 30130742 PMCID: PMC6128426 DOI: 10.18632/aging.101525] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the role of an antichondrogenic factor, MIR221 (miR-221), in intervertebral disc degeneration (IDD), and provide basic information for the development of a therapeutic strategy for the disc repair based on specific nucleic acid based drugs, such as miR-221 silencing. We established a relatively quick protocol to minimize artifacts from extended in vitro culture, without selecting the different types of cells from intervertebral disc (IVD) or completely disrupting extracellular matrix (ECM), but by using the whole cell population with a part of resident ECM. During the de-differentiation process miR-221 expression significantly increased. We demonstrated the effectiveness of miR-221 silencing in driving the cells towards chondrogenic lineage. AntagomiR-221 treated cells showed in fact a significant increase of expression of typical chondrogenic markers including COL2A1, ACAN and SOX9, whose loss is associated with IDD. Moreover, antagomiR-221 treatment restored FOXO3 expression and increased TRPS1 expression levels attenuating the severity grade of degeneration, and demonstrating in a context of tissue degeneration and inflammation not investigated before, that FOXO3 is target of miR-221. Data of present study are promising in the definition of new molecules useful as potential intradiscal injectable biological agents.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Tosca Roncada
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Kang L, Yang C, Song Y, Zhao K, Liu W, Hua W, Wang K, Tu J, Li S, Yin H, Zhang Y. MicroRNA-494 promotes apoptosis and extracellular matrix degradation in degenerative human nucleus pulposus cells. Oncotarget 2018; 8:27868-27881. [PMID: 28427186 PMCID: PMC5438614 DOI: 10.18632/oncotarget.15838] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE This study investigated the expression and function of the microRNA-494 in intervertebral disc degeneration (IDD). RESULTS MicroRNA-494 expression was upregulated during IDD progression; its overexpression increased the expression of ECM catabolic factors such as matrix metalloproteinase and A disintegrin and metalloproteinase with thrombospondin motif in NP cells while decreasing that of anabolic genes such as type II collagen and aggrecan; it also induced the apoptosis of NP cells, as determined by flow cytometry. These effects were reversed by microRNA-494 inhibitor treatment. SOX9 was identified as a target of negative regulation by microRNA-494. Promoter hypomethylation and NF-κB activation were associated with microRNA-494 upregulation in IDD. MATERIALS AND METHODS MicroRNA-494 expression in degenerative nucleus pulposus (NP) tissue was assessed by quantitative real-time PCR. The effect of microRNA-494 on extracellular matrix (ECM) metabolism and NP cell apoptosis was evaluated by transfection of microRNA-494 mimic or inhibitor. The regulation of SRY-related high mobility group box (SOX)9 expression by microRNA-494 was assessed with the luciferase reporter assay, and the methylation status of the microRNA-494 promoter was evaluated by methylation-specific PCR and bisulfite sequencing PCR. The role of activated nuclear factor (NF)-κB in the regulation of microRNA-494 expression was evaluated using specific inhibitors. CONCLUSIONS MicroRNA-494 promotes ECM degradation and apoptosis of degenerative human NP cells by directly targeting SOX9.
Collapse
Affiliation(s)
- Liang Kang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ji Tu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Wang C, Zhang ZZ, Yang W, Ouyang ZH, Xue JB, Li XL, Zhang J, Chen WK, Yan YG, Wang WJ. MiR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomed Pharmacother 2017; 93:470-479. [PMID: 28667916 DOI: 10.1016/j.biopha.2017.06.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/26/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is thought to be the most common cause of low back pain. Dysregulation of microRNAs (miRNAs) is involved in the development of IDD. The aim of this study was to explore the influence of miR-210 on type II collagen (Col II) and aggrecan expression and possible mechanisms in human degenerated nucleus pulposus (NP) cells. Our results showed that miR-210 levels were significantly increased in degenerated NP tissues compared with healthy controls, and positively correlated with disc degeneration grade. By gain-of-function and loss-of-function studies in human degenerated NP cells, miR-210 was shown to inhibit autophagy and then upregulate MMP-3 and MMP-13 expression, leading to increased degradation of Col II and aggrecan. Autophagy-related gene 7 (ATG7) was identified as a direct target of miR-210. Knockdown of ATG7 by small interfering RNA (siRNA) abrogated the effects of miR-210 inhibitor on MMP-3, MMP-13, Col II and aggrecan expression. Taken together, these results suggest that miR-210 inhibits autophagy via silencing of ATG7, leading to increased Col II and aggrecan degradation in human degenerated NP cells.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Zi-Zhen Zhang
- School of Nursing, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, China
| | - Wei Yang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jing-Bo Xue
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xue-Lin Li
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Kang Chen
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
18
|
Huang Y, Feng G, Liu L, Li T, Liu H, Song Y. [Research progress of microRNA and its non-viral vector in intervertebral disc degeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:116-121. [PMID: 29798640 PMCID: PMC9548034 DOI: 10.7507/1002-1892.201609092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/04/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To summarize the research progress of microRNA (miRNA) and its non-viral vector in intervertebral disc degeneration (IDD) and to investigate the potential of non-viral vector delivery of miRNA in clinical application. METHODS The related literature about the role of miRNA in IDD and its non-viral delivery system was reviewed and analyzed. RESULTS MiRNA can regulate the related gene expression level and further participate in the pathophysiologic process in degenerated intervertebral disc, miRNA delivered by various non-viral vectors has obtained an ideal effect in some diseases. CONCLUSION MiRNA plays a great role in the cellular and molecular mechanisms of IDD, as a safe and effective strategy for gene therapy, non-viral vector provides new possibilities for IDD treated with miRNA.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ganjun Feng
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| | - Limin Liu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Tao Li
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Hao Liu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yueming Song
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|