1
|
He X, Fang J, Gong M, Zhang J, Xie R, Zhao D, Gu Y, Ma L, Pang X, Cui Y. Identification of immune-associated signatures and potential therapeutic targets for pulmonary arterial hypertension. J Cell Mol Med 2023; 27:3864-3877. [PMID: 37753829 PMCID: PMC10718157 DOI: 10.1111/jcmm.17962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/09/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) comprises a heterogeneous group of diseases with diverse aetiologies. It is characterized by increased pulmonary arterial pressure and right ventricular (RV) failure without specific drugs for treatment. Emerging evidence suggests that inflammation and autoimmune disorders are common features across all PAH phenotypes. This provides a novel idea to explore the characteristics of immunological disorders in PAH and identify immune-related genes or biomarkers for specific anti-remodelling regimens. In this study, we integrated three gene expression profiles and performed Gene Ontology (GO) and KEGG pathway analysis. CIBERSORT was utilized to estimate the abundance of tissue-infiltrating immune cells in PAH. The PPI network and machine learning were constructed to identify immune-related hub genes and then evaluate the relationship between hub genes and differential immune cells using ImmucellAI. Additionally, we implemented molecular docking to screen potential small-molecule compounds based on the obtained genes. Our findings demonstrated the density and distribution of infiltrating CD4 T cells in PAH and identified four immune-related genes (ROCK2, ATHL1, HSP90AA1 and ACTR2) as potential targets. We also listed 20 promising molecules, including TDI01953, pemetrexed acid and radotinib, for PAH treatment. These results provide a promising avenue for further research into immunological disorders in PAH and potential novel therapeutic targets.
Collapse
Affiliation(s)
- Xu He
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Jiansong Fang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Mingli Gong
- Department of PharmacyPeking University First HospitalBeijingChina
- School of PharmacyXu Zhou Medical UniversityXuzhouChina
| | - Juqi Zhang
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Ran Xie
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Dai Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yanlun Gu
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Lingyue Ma
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Xiaocong Pang
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| | - Yimin Cui
- Department of PharmacyPeking University First HospitalBeijingChina
- Institute of Clinical PharmacologyPeking University First HospitalBeijingChina
| |
Collapse
|
2
|
Robillard S, Trân K, Lachance MS, Brazeau T, Boisvert E, Lizotte F, Auger-Messier M, Boudreault PL, Marsault É, Geraldes P. Apelin prevents diabetes-induced poor collateral vessel formation and blood flow reperfusion in ischemic limb. Front Cardiovasc Med 2023; 10:1191891. [PMID: 37636297 PMCID: PMC10450936 DOI: 10.3389/fcvm.2023.1191891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Peripheral arterial disease (PAD) is a major risk factor for lower-extremity amputation in diabetic patients. Unfortunately, previous clinical studies investigating therapeutic angiogenesis using the vascular endothelial growth factor (VEGF) have shown disappointing results in diabetic patients, which evokes the necessity for novel therapeutic agents. The apelinergic system (APJ receptor/apelin) is highly upregulated under hypoxic condition and acts as an activator of angiogenesis. Apelin treatment improves revascularization in nondiabetic models of ischemia, however, its role on angiogenesis in diabetic conditions remains poorly investigated. This study explored the impact of Pyr-apelin-13 in endothelial cell function and diabetic mouse model of hindlimb ischemia. Methods Nondiabetic and diabetic mice underwent femoral artery ligation to induce limb ischemia. Diabetic mice were implanted subcutaneously with osmotic pumps delivering Pyr-apelin-13 for 28 days. Blood flow reperfusion was measured for 4 weeks post-surgery and exercise willingness was assessed with voluntary wheels. In vitro, bovine aortic endothelial cells (BAECs) were exposed to normal (NG) or high glucose (HG) levels and hypoxia. Cell migration, proliferation and tube formation assays were performed following either VEGF or Pyr-apelin-13 stimulation. Results and Discussion Following limb ischemia, blood flow reperfusion, functional recovery of the limb and vascular density were improved in diabetic mice receiving Pyr-apelin-13 compared to untreated diabetic mice. In cultured BAECs, exposure to HG concentrations and hypoxia reduced VEGF proangiogenic actions, whereas apelin proangiogenic effects remained unaltered. Pyr-apelin-13 induced its proangiogenic actions through Akt/AMPK/eNOS and RhoA/ROCK signaling pathways under both NG or HG concentrations and hypoxia exposure. Our results identified the apelinergic system as a potential therapeutic target for angiogenic therapy in diabetic patients with PAD.
Collapse
Affiliation(s)
- Stéphanie Robillard
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Kien Trân
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Sophie Lachance
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Tristan Brazeau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Elizabeth Boisvert
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Geraldes
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Inactivating the Uninhibited: The Tale of Activins and Inhibins in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24043332. [PMID: 36834742 PMCID: PMC9963072 DOI: 10.3390/ijms24043332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advances in technology and biomedical knowledge have led to the effective diagnosis and treatment of an increasing number of rare diseases. Pulmonary arterial hypertension (PAH) is a rare disorder of the pulmonary vasculature that is associated with high mortality and morbidity rates. Although significant progress has been made in understanding PAH and its diagnosis and treatment, numerous unanswered questions remain regarding pulmonary vascular remodeling, a major factor contributing to the increase in pulmonary arterial pressure. Here, we discuss the role of activins and inhibins, both of which belong to the TGF-β superfamily, in PAH development. We examine how these relate to signaling pathways implicated in PAH pathogenesis. Furthermore, we discuss how activin/inhibin-targeting drugs, particularly sotatercep, affect pathophysiology, as these target the afore-mentioned specific pathway. We highlight activin/inhibin signaling as a critical mediator of PAH development that is to be targeted for therapeutic gain, potentially improving patient outcomes in the future.
Collapse
|
4
|
Yuan H, Liu X, Wang Z, Ren Y, Li Y, Gao C, Jiao T, Cai Y, Yang Y, Zhao S. Alternative splicing signature of alveolar type II epithelial cells of Tibetan pigs under hypoxia-induced. Front Vet Sci 2022; 9:984703. [PMID: 36187824 PMCID: PMC9523697 DOI: 10.3389/fvets.2022.984703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) allows the generation of multiple transcript variants from a single gene and affects biological processes by generating protein diversity in organisms. In total, 41,642 AS events corresponding to 9,924 genes were identified, and SE is the most abundant alternatively spliced type. The analysis of functional categories demonstrates that alternatively spliced differentially expressed genes (DEGs) were enriched in the MAPK signaling pathway and hypoxia-inducible factor 1 (HIF-1) signaling pathway. Proteoglycans in cancer between the normoxic (21% O2, TN and LN) and hypoxic (2% O2, TL and LL) groups, such as SLC2A1, HK1, HK2, ENO3, and PFKFB3, have the potential to rapidly proliferate alveolar type II epithelial (ATII) cells by increasing the intracellular levels of glucose and quickly divert to anabolic pathways by glycolysis intermediates under hypoxia. ACADL, EHHADH, and CPT1A undergo one or two AS types with different frequencies in ATII cells between TN and TL groups (excluding alternatively spliced DEGs shared between normoxic and hypoxic groups), and a constant supply of lipids might be obtained either from the circulation or de novo synthesis for better growth of ATII cells under hypoxia condition. MCM7 and MCM3 undergo different AS types between LN and LL groups (excluding alternatively spliced DEGs shared between normoxic and hypoxic groups), which may bind to the amino-terminal PER-SIM-ARNT domain and the carboxyl terminus of HIF-1α to maintain their stability. Overall, AS and expression levels of candidate mRNAs between Tibetan pigs and Landrace pigs revealed by RNA-seq suggest their potential involvement in the ATII cells grown under hypoxia conditions.
Collapse
Affiliation(s)
- Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhengwen Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Xinjiang, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yanan Yang
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Shengguo Zhao
| |
Collapse
|
5
|
Yang Z, Zhou L, Ge H, Shen W, Shan L. Identification of autophagy-related biomarkers in patients with pulmonary arterial hypertension based on bioinformatics analysis. Open Med (Wars) 2022; 17:1148-1157. [PMID: 35859795 PMCID: PMC9263897 DOI: 10.1515/med-2022-0497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Autophagy participates in the regulation of pulmonary arterial hypertension (PAH). However, the role of autophagy-related genes (ARGs) in the pathogenesis of the PAH is still unclear. This study aimed to identify the ARGs in PAH via bioinformatics analysis. A microarray dataset (GSE113439) was downloaded from the Gene Expression Omnibus database to identify differentially expressed ARGs (DEARGs). Protein–protein interactions network, gene ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to screen hub genes and the underlying molecular mechanisms of PAH. Finally, the mRNA expression of the hub genes was validated using the GSE53408 dataset. Twenty-six DEARGs were identified, all of which were upregulated. Enrichment analyses revealed that these DEARGs were mainly enriched in the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway, PI3K-Akt signaling pathway, response to hypoxia, response to nutrient levels, and autophagy. Among these hub genes, the mRNA expression levels of HSP90AA1, HIF1A, MET, IGF1, LRRK2, CLTC, DNM1L, MDM2, RICTOR, and ROCK2 were significantly upregulated in PAH patients than in healthy individuals. Ten hub DEARGs were identified and may participate in the pathogenesis of the PAH via the regulation of autophagy. The present study may provide novel therapeutic targets for PAH prevention and treatment and expand our understanding of PAH.
Collapse
Affiliation(s)
- Zhisong Yang
- Department of Emergency, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, China
| | - Li Zhou
- Department of Emergency, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, China
| | - Haiyan Ge
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| | - Weimin Shen
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| | - Lin Shan
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| |
Collapse
|
6
|
Song R, Lei S, Yang S, Wu SJ. LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis. J Cell Mol Med 2021; 25:7321-7334. [PMID: 34245091 PMCID: PMC8335679 DOI: 10.1111/jcmm.16761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease featured with elevated pulmonary vascular resistance and progressive pulmonary vascular remodelling. It has been demonstrated that lncRNA PAXIP1‐AS1 could influence the transcriptome in PAH. However, the exact molecular mechanism of PAXIP1‐AS1 in PAH pathogenesis remains largely unknown. In this study, in vivo rat PAH model was established by monocrotaline (MCT) induction and hypoxia was used to induce in vitro PAH model using human pulmonary artery smooth muscle cells (hPASMCs). Histological examinations including H&E, Masson's trichrome staining and immunohistochemistry were subjected to evaluate the pathological changes of lung tissues. Expression patterns of PAXIP1‐AS1 and RhoA were assessed using qRT‐PCR and Western blotting, respectively. CCK‐8, BrdU assay and immunofluorescence of Ki67 were performed to measure the cell proliferation. Wound healing and transwell assays were employed to evaluate the capacity of cell migration. Dual‐luciferase reporter assay, co‐immunoprecipitation, RIP and CHIP assays were employed to verify the PAXIP1‐AS1/ETS1/WIPF1/RhoA regulatory network. It was found that the expression of PAXIP1‐AS1 and RhoA was remarkably higher in both lung tissues and serum of MCT‐induced PAH rats, as well as in hypoxia‐induced hPASMCs. PAXIP1‐AS1 knockdown remarkably suppressed hypoxia‐induced cell viability and migration of hPASMCs. PAXIP1‐AS1 positively regulated WIPF1 via recruiting transcriptional factor ETS1, of which knockdown reversed PAXIP1‐AS1‐mediated biological functions. Co‐immunoprecipitation validated the WIPF1/RhoA interaction. In vivo experiments further revealed the role of PAXIP1‐AS1 in PAH pathogenesis. In summary, lncRNA PAXIP1‐AS1 promoted cell viability and migration of hPASMCs via ETS1/WIPF1/RhoA, which might provide a potential therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Rong Song
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Song Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shang-Jie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
8
|
Yamamura A, Nayeem MJ, Sato M. The Rho kinase 2 (ROCK2)-specific inhibitor KD025 ameliorates the development of pulmonary arterial hypertension. Biochem Biophys Res Commun 2021; 534:795-801. [PMID: 33160621 DOI: 10.1016/j.bbrc.2020.10.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that is characterized by the irreversible remodeling of the pulmonary artery. Although several PAH drugs have been developed, additional drugs are needed. Rho kinases (ROCKs) are involved in the pathogenesis of PAH, and thus, their inhibitors may prevent the development of PAH. However, the therapeutic benefits of ROCK isoform-specific inhibitors for PAH remain largely unknown. The in vitro and in vivo effects of the ROCK2-specific inhibitor, KD025, were examined herein using pulmonary arterial smooth muscle cells (PASMCs) from idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline (MCT)-induced pulmonary hypertensive (PH) rats. The expression of ROCK1 was similar between normal- and IPAH-PASMCs, whereas that of ROCK2 was markedly higher in IPAH-PASMCs than in normal-PASMCs. KD025 inhibited the accelerated proliferation of IPAH-PASMCs in a concentration-dependent manner (IC50 = 289 nM). Accelerated proliferation was also reduced by the siRNA knockdown of ROCK2. In MCT-PH rats, the expression of ROCK2 was up-regulated in PASMCs. Elevated right ventricular systolic pressure in MCT-PH rats was attenuated by KD025 (1 mg/kg/day). These results strongly suggest that enhanced ROCK2 signaling is involved in the pathogenic mechanism underlying the development of PAH, including accelerated PASMC proliferation and vascular remodeling in patients with PAH. Therefore, ROCK2 may be a novel therapeutic target for the treatment of PAH.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Md Junayed Nayeem
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
9
|
Jiang H, Yu X, Zhang L, Wang M. Effects of treprostinil on pulmonary arterial hypertension during surgery for congenital heart disease complicated with severe pulmonary arterial hypertension. Minerva Cardiol Angiol 2020; 69:154-160. [PMID: 32138501 DOI: 10.23736/s2724-5683.20.05085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study is to evaluate the effects of treprostinil injection on the control of pulmonary blood pressure in children with congenital heart disease (CHD) complicated by severe pulmonary arterial hypertension (PAH). METHODS Eighty children with CHD complicated by severe pulmonary arterial hypertension admitted to our hospital from January 2015 to June 2018 were selected and randomly divided into a control group (N.=40) and a treatment group (N.=40). Based on standard treatment, the treatment group was intravenously infused with 8-12 ng/kg·min treprostinil, while the control group received the same dose of normal saline. Hemodynamic parameters such as BP, AP, P and SpO<inf>2</inf>% were monitored before anesthesia induction (T0), before cardiopulmonary bypass (T1), 1 h after cardiopulmonary bypass (T2) and at the end of cardiopulmonary bypass (T3). Pulmonary arterial pressure parameters (PASP, PADP and PAMP) were measured at T1, T2 and T3 by transesophageal echocardiography. RESULTS For the treatment group, the HR values at T2 and T3 were lower than that at T0 (P<0.05). For the control group, HR at T3 was lower than that at T0 (P<0.05). HR at T3 of the treatment group was lower than that of the control group (P<0.05). SpO<inf>2</inf> of the treatment group was higher than that of the control group at T3 (P<0.05). At T2 and T3, PASP, PADP and PAMP of both groups were lower than those before surgery (P<0.05), and the values of the treatment group were lower than those of the control group (P<0.05). CONCLUSIONS Treprostinil can improve cardiac function and reduce pulmonary circulation resistance in PAH children.
Collapse
Affiliation(s)
- Huiwen Jiang
- Department of Ultrasonography, Weihai Central Hospital, Weihai, China
| | - Xiaodan Yu
- Blood Purification Center, Weihai Central Hospital, Weihai, China
| | - Lina Zhang
- Penglai People's Hospital, Yantai, China
| | - Minxin Wang
- Department of Ultrasonography, Weihai Central Hospital, Weihai, China -
| |
Collapse
|
10
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|
11
|
Liu B, Chang R, Duan Z, Zhang X, Shen Y, Liu X, Wu J, Tuo Y, Luo J. The level of ROCK1 and ROCK2 in patients with pulmonary hypertension in plateau area. Sci Rep 2018; 8:9356. [PMID: 29921927 PMCID: PMC6008473 DOI: 10.1038/s41598-018-27321-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/23/2018] [Indexed: 12/04/2022] Open
Abstract
Pulmonary hypertension (PH) is defined as the mean pulmonary artery pressure (mPAP) ≥25 mmHg under the sea level in resting state. ROCK1 and ROCK2 can be combined to cause the damage of vascular endothelial function. To explore the differences of ROCK1 and ROCK2 in subjects with pulmonary hypertension or normal pulmonary artery pressure in plateau area, and to further understand the mechanism of Rho/rho-kinase pathway activation for promoting pulmonary hypertension, we collected 64 patients with pulmonary hypertension and 87 normal pulmonary artery healthy controls. All subjects were hospitalized in Cardiology or Respiration Department of Qinghai Provincial Peoples’ Hospital from December 2016 to June 2017. The pulmonary artery systolic pressure was measured by Doppler ultrasound, and serum ROCK1 and ROCK2 levels were tested by enzyme linked immunosorbent assay (ELISA). We found that the serum ROCK2 concentration in the pulmonary hypertension group was significantly higher than that in the control group, but serum ROCK1 level had no significant difference. ROCK2 plays a leading role in pulmonary hypertension in the plateau region, so selective ROCK2 inhibitors will be more effective in improving pulmonary hypertension.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Rong Chang
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China.
| | - Zhili Duan
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Xiaofei Zhang
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Yusong Shen
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Xiangbo Liu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Jinchun Wu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Yajun Tuo
- Department of Pneumology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Junming Luo
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, 810007, China
| |
Collapse
|
12
|
Blissenbach B, Nakas CT, Krönke M, Geiser T, Merz TM, Pichler Hefti J. Hypoxia-induced changes in plasma micro-RNAs correlate with pulmonary artery pressure at high altitude. Am J Physiol Lung Cell Mol Physiol 2017; 314:L157-L164. [PMID: 28971974 DOI: 10.1152/ajplung.00146.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro and animal studies revealed micro-RNAs (miRs) to be involved in modulation of hypoxia-induced pulmonary hypertension (HPH). However, knowledge of circulating miRs in humans in the context of HPH is very limited. Since symptoms of HPH are nonspecific and noninvasive diagnostic parameters do not exist, a disease-specific and hypoxemia-independent biomarker indicating HPH would be of clinical value. To examine whether plasma miR levels correlate with hypoxia-induced increase in pulmonary artery pressures, plasma miRs were assessed in a model of hypoxia-related pulmonary hypertension in humans exposed to extreme altitude. Forty healthy volunteers were repetitively examined during a high-altitude expedition up to an altitude of 7,050 m. Plasma levels of miR-17, -21, and -190 were measured by real-time quantitative PCR and correlated with systolic pulmonary artery pressure (SPAP), which was assessed by echocardiography. A significant altitude-dependent increase in circulating miR expression was found (all P values < 0.0001). Compared with baseline at 500 m, miR-17 changed by 4.72 ± 0.57-fold, miR-21 changed by 1.91 ± 0.33-fold, and miR-190 changed by 3.61 ± 0.54-fold at 7,050 m (means ± SD). Even after adjusting for hypoxemia, miR-17 and miR-190 were found to be independently correlated with increased SPAP. Progressive hypobaric hypoxia significantly affects levels of circulating miR-17, -21, and -190. Independently from the extent of hypoxemia, miR-17 and -190 significantly correlate with increased SPAP. These novel findings provide evidence for an epigenetic modulation of hypoxia-induced increase in pulmonary artery pressures by miR-17 and -190 and suggest the potential value of these miRs as biomarkers for HPH.
Collapse
Affiliation(s)
- Birgit Blissenbach
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne , Cologne , Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany
| | - Christos T Nakas
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern , Bern , Switzerland.,Laboratory of Biometry, University of Thessaly , Volos , Greece
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne , Cologne , Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern , Bern , Switzerland
| | - Tobias M Merz
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern , Bern , Switzerland
| | - Jacqueline Pichler Hefti
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne , Cologne , Germany.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern , Bern , Switzerland
| |
Collapse
|