1
|
Tu Y, Ma X, Chen H, Fan Y, Jiang L, Zhang R, Cheng Z. Molecular Imaging of Matrix Metalloproteinase-2 in Atherosclerosis Using a Smart Multifunctional PET/MRI Nanoparticle. Int J Nanomedicine 2022; 17:6773-6789. [PMID: 36600879 PMCID: PMC9805955 DOI: 10.2147/ijn.s385679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background Matrix metalloproteinases from macrophages are important intraplaque components that play pivotal roles in plaque progression and regression. This study sought to develop a novel multifunctional positron emission tomography (PET) and magnetic resonance imaging (MRI) contrast agents based on MMP-2 cleavable nanoparticles to noninvasive assessment of MMP-2 activity in mouse carotid atherosclerotic plaques. Results Macrophage-rich vascular lesions were induced by carotid ligation plus high-fat diet and streptozotocin-induced diabetes in CL57/BL6 mice. To render iron oxide nanoparticles (IONP) specific for the extracellular MMP-2, the magnetic nanoparticle base material has been derivatized with 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for the nuclear tracer 64Cu labeling and the MMP-2-cleavable peptide modified with polyethylene glycol 2000, yielding a multi-modality reporter (64Cu-NOTA-IONP@MMP2c-PEG2K, MMP2cNPs) for PET/MR imaging. Small animal PET imaging and biodistribution data revealed that MMP2cNPs exhibited remarkable plaque uptake (3.06 ± 0.87% ID/g and 1.83 ± 0.28% ID/g at 4 and 12 h, respectively). And MMP2cNPs were rapidly cleared from the contralateral normal carotid artery, resulting in excellent plaque-to-normal carotid artery contrasts. Furthermore, in vivo MRI showed a preferential accumulation of MMP2cNPs in atherosclerotic lesions compared with the non-cleavable reference compound, MMP2ncNPs. In addition, histological analyses revealed iron accumulations in the carotid atherosclerotic plaque, in colocalization with MMP-2 expression and macrophages. Conclusion Using a combination of innovative imaging modalities, in this study, we demonstrate the feasibility of applying the novel smart MMP2cNPs as a PET/MR hybrid imaging contrast agent for detection of MMP-2 in atherosclerotic plaque in vivo.
Collapse
Affiliation(s)
- Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China,Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Xiaowei Ma
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hao Chen
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yuhua Fan
- College of Pharmacy, Harbin Medical University, Daqing, Heilongjiang, People’s Republic of China
| | - Lei Jiang
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Ruiping Zhang
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA,The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, People’s Republic of China,Ruiping Zhang, Department of Radiology, the Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People’s Republic of China, Email
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China,Correspondence: Zhen Cheng, Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, 1201 Welch Road, Lucas Expansion, P095, Stanford University, Stanford, CA, 94305, USA, Tel +01-650-723-7866, Email
| |
Collapse
|
2
|
Mo H, Fu C, Wu Z, Liu P, Wen Z, Hong Q, Cai Y, Li G. IL-6-targeted ultrasmall superparamagnetic iron oxide nanoparticles for optimized MRI detection of atherosclerotic vulnerable plaques in rabbits. RSC Adv 2020; 10:15346-15353. [PMID: 35495447 PMCID: PMC9052309 DOI: 10.1039/c9ra10509c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/04/2020] [Indexed: 12/30/2022] Open
Abstract
Vulnerable plaques of atherosclerosis (AS) are the main culprit lesion for the serious risk of acute cardiovascular disease (CVD). Therefore, developing new non-invasive methods to detect vulnerable plaques and to evaluate their stability effectively is of great value in the early diagnosis of CVD. IL-6 plays a vital role in the development and rupture of AS. In this study, IL-6-targeted superparamagnetic iron oxide nanoparticles (Anti-IL-6-USPIO) are synthesized by a chemical condensation reaction. An AS model was established by damaging rabbit abdominal aortic intima with Foley's tube in combination with a high cholesterol diet. The results confirm that Anti-IL-6-USPIO have excellent IL-6-targeting ability and usefulness in detecting vulnerable plaques in vitro and in vivo, which may provide a novel, non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs. Herein, we report Anti-IL-6-USPIO for detecting IL-6 in inflammatory macrophages and MR imaging vulnerable plaques of atherosclerosis in rabbit, which would provide a novel non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs.![]()
Collapse
Affiliation(s)
- Huaqiang Mo
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Chenxing Fu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhiye Wu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Peng Liu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhibo Wen
- Department of Radiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Qingqing Hong
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Yanbin Cai
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Gongxin Li
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| |
Collapse
|
3
|
Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019; 8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion. The assembly of nanoagents with endogenous and exogenous stimuli breaks down their shells, facilitates intracellular delivery, releases their cargo to kill the corrupt cells, and gives imaging reports. All these improvements pave the way toward personalized medicine for atherosclerosis. This review systematically summarizes the recent advances in stimuli-responsive nanoagents for atherosclerosis management and its progress in clinical trials.
Collapse
Affiliation(s)
- Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Tieyin Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Nan Wang
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Colm Durkan
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Youhua Tan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| |
Collapse
|
4
|
The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:1-27. [PMID: 30315537 DOI: 10.1007/978-3-319-96445-4_1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.
Collapse
|
5
|
Liberale L, Dallegri F, Carbone F, Montecucco F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost 2017; 117:7-18. [PMID: 27683760 DOI: 10.1160/th16-08-0593] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
SummaryMacrophages are highly heterogeneous and plastic cells. They were shown to play a critical role in all stages of atherogenesis, from the initiation to the necrotic core formation and plaque rupture. Lesional macrophages primarily derive from blood monocyte, but local macrophage proliferation as well as differentiation from smooth muscle cells have also been described. Within atherosclerotic plaques, macrophages rapidly respond to changes in the microenvironment, shifting between pro- (M1) or anti-inflammatory (M2) functional phenotypes. Furthermore, different stimuli have been associated with differentiation of newly discovered M2 subtypes: IL-4/IL-13 (M2a), immunecomplex (M2b), IL-10/glucocorticoids (M2c), and adenosine receptor agonist (M2d). More recently, additional intraplaque macrophage phenotypes were also recognized in response to CXCL4 (M4), oxidized phospholipids (Mox), haemoglobin/haptoglobin complexes (HAmac/M(Hb)), and heme (Mhem). Such macrophage polarization was described as a progression among multiple phenotypes, which reflect the activity of different transcriptional factors and the cross-talk between intracellular signalling. Finally, the distribution of macrophage subsets within different plaque areas was markedly associated with cardiovascular (CV) vulnerability. The aim of this review is to update the current knowledge on the role of macrophage subsets in atherogenesis. In addition, the molecular mechanisms underlying macrophage phenotypic shift will be summarised and discussed. Finally, the role of intraplaque macrophages as predictors of CV events and the therapeutic potential of these cells will be discussed.
Collapse
|
6
|
Liu HY, Zhou J, Tong H, Tang Y, Wang XF, Zhou QC. Quantitative evaluation of atherosclerotic plaques and intraplaque neovascularization using contrast-enhanced ultrasound after treatment with atorvastatin in rabbits. Biomed Pharmacother 2017; 92:277-284. [DOI: 10.1016/j.biopha.2017.04.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/01/2017] [Indexed: 12/21/2022] Open
|