1
|
Chen J, Wang Y, Zhang N, Li J, Liu X. Genotypic and phenotypic characteristics of Acinetobacter baumannii isolates from the people's hospital of Qingyang City, Gansu province. BMC Genomics 2024; 25:727. [PMID: 39060939 PMCID: PMC11282657 DOI: 10.1186/s12864-024-10601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is a common opportunistic pathogen in hospitals that causes nosocomial infection. In order to understand the phenotypic and genotypic characteristics of A. baumannii isolates, we sequenced and analyzed 62 A. baumannii isolates from a hospital in Gansu province. RESULTS Non-repeated 62 A. baumannii isolates were collected from August 2015 to November 2021. Most isolates (56/62) were resistant to multiple drugs. All the 62 A. baumannii isolates were resistant to aztreonam and contained blaADC-25 gene which exists only on chromosome contigs. The 62 isolates in this study were not clustered in a single clade, but were dispersed among multiple clades in the common genome. Seven sequence types were identified by Multilocus sequence type (MLST) analysis and most isolates (52/62) belonged to ST2. The plasmids were grouped into 11 clusters by MOB-suite. CONCLUSIONS This study furthers the understanding of A. baumannii antimicrobial-resistant genotypes, and may aid in prevention and control nosocomial infection caused by drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Jiali Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Na Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Li
- Department of Clinical Laboratory Medicine, Qingyang People's Hospital, Qingyang, Gansu, 745000, China.
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
2
|
Xie J, Jiang H, Zhao Y, Zhong M, Jin X, Zhu Z, Baolin Li, Guo J, Zhang L, Liu J. Aptamer-based DNA-catalyzed amplification strategy for sensitive fluorescence resonance energy transfer detection of Acinetobacter baumannii. Talanta 2023; 255:124212. [PMID: 36566558 DOI: 10.1016/j.talanta.2022.124212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a common pathogen that causes hospital-acquired infections and is resistant to a wide variety of antibiotics. Consequently, the rapid and highly sensitive detection of A. baumannii is required during the early stages of infection. Therefore, we developed a DNA-catalyzed amplification mechanism based on aptamers, combined with a novel fluorescence resonance energy transfer (FRET) method based on graphene oxide (GO), for the detection of A. baumannii. In the presence of A. baumannii, an aptamer bound to A. baumannii, releasing the template strand, which triggered an entropy-driven catalysis (EDC) reaction. One EDC product was then used as the catalyst for catalytic hairpin assembly (CHA) on a GO nanosheet. Finally, the GO released a huge amount of FAM-labeled DNA duplices, which could be detected with FRET. This strategy circumvented the extraction of nucleic acids and was easy to execute, with a detection time of ≤1.5 h. The detection of A. baumannii with this method ranges from 5 cfu/mL to 1 × 105 cfu/mL, with a detection limit of 1.1 cfu/mL. The method was sufficiently sensitive and specific to detect A. baumannii rapidly in cerebrospinal fluid. In summary, our strategy provides a new option for the early detection and point-of-care testing (POCT) of A. baumannii infections, allowing their earlier and more precise treatment.
Collapse
Affiliation(s)
- Jingling Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Hui Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Yuanqing Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Min Zhong
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Xinrui Jin
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Zixin Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Jinglan Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Limei Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
3
|
Metallo-Beta-Lactamase-Producing Acinetobacter spp. from Clinical Isolates at a Tertiary Care Hospital in Ghana. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3852419. [PMID: 33029505 PMCID: PMC7533015 DOI: 10.1155/2020/3852419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022]
Abstract
Metallo-beta-lactamase-producing Acinetobacter spp. is a major challenge for therapeutic treatment of nosocomial infections. This study is aimed at determining the prevalence of MBL-producing Acinetobacter spp. among 87 clinical isolates of Acinetobacter spp. from the Korle-Bu Teaching Hospital, Accra, between August 2014 and July 2015. Acinetobacter spp. was identified by standard bacteriological method, and resistance to different antibiotics was assessed with the Kirby–Bauer disc diffusion method. Meropenem-resistant Acinetobacter isolates were screened for enzyme activity using the modified Hodge test (MHT) and combined disc test (CDT). Additionally, multiplex PCR was used to determine MBL genes presence (blaVIM,blaIMP, and blaNDM). All Acinetobacter isolates showed high resistance to cefotaxime (90.8%), ceftazidime (75.9%), cotrimoxazole (70.1%), ciprofloxacin (64.4%), gentamicin (72.4%), levofloxacin (67.8%), and meropenem (59.8%). A total of 54 (62.1%) of Acinetobacter isolates were multidrug-resistant. Out of 52 (59.8%) meropenem-resistant Acinetobacter, 3 (5.8%) were carbapenemase producers by MHT, whilst, 23 (44.2%) were CDT positive. There was no significant difference between the resistance pattern of amikacin, ceftazidime, cotrimoxazole, ciprofloxacin, and meropenem amongst CDT-positive and CDT-negative isolates (p > 0.05). A total of 7/87 (8.1%) CDT-positive Acinetobacter isolates harboured blaNDM; of these, 4 (57.1%) were from wound swabs, urine (n = 2) (28.6%), and ear swab (n = 1) (14.3%). The study revealed that less than 9% of Acinetobacter spp. contained blaNDM encoding genes. Strict antibiotics usage plan and infection control measures are required to prevent the spread of these resistance genes.
Collapse
|
4
|
Abd El-Baky RM, Farhan SM, Ibrahim RA, Mahran KM, Hetta HF. Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2019.1707350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rehab M. Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Sara M. Farhan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Reham A. Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Khaled M. Mahran
- General Surgery and Laparoscopic surgery, Faculty of Medicine, Minia University, Minia, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
5
|
Liu Y, Mi Z, Mi L, Huang Y, Li P, Liu H, Yuan X, Niu W, Jiang N, Bai C, Gao Z. Identification and characterization of capsule depolymerase Dpo48 from Acinetobacter baumannii phage IME200. PeerJ 2019; 7:e6173. [PMID: 30656071 PMCID: PMC6336015 DOI: 10.7717/peerj.6173] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background The emergence of multidrug- or extensively drug-resistant Acinetobacter baumannii has made it difficult to treat and control infections caused by this bacterium. It is urgently necessary to search for alternatives to conventional antibiotics for control of severe A. baumannii infections. In recent years, bacteriophages and their derivatives, such as depolymerases, showed great potential as antibacterial or antivirulence agents against bacterial infections. Nonetheless, unlike broad-spectrum bactericidal antibiotics, phage-encoded depolymerase targets only a limited number of bacterial strains. Therefore, identification of novel depolymerases and evaluation of their ability to control A. baumannii infections is important. Methods A bacteriophage was isolated from hospital sewage using an extensively drug-resistant A. baumannii strain as the host bacterium, and the phage’s plaque morphology and genomic composition were studied. A polysaccharide depolymerase (Dpo48) was expressed and identified, and the effects of pH and temperature on its activity were determined. Besides, a serum killing assay was conducted, and amino acid sequences homologous to those of putative polysaccharide depolymerases were compared. Results Phage IME200 yielded clear plaques surrounded by enlarged halos, with polysaccharide depolymerase activity against the host bacterium. A tail fiber protein with a Pectate_lyase_3 domain was identified as Dpo48 and characterized . Dpo48 was found to degrade the capsule polysaccharide of the bacterial surface, as revealed by Alcian blue staining. Dpo48 manifested stable activity over a broad range of pH (5.0–9.0) and temperatures (20–70 °C). Results from in vitro serum killing assays indicated that 50% serum was sufficient to cause a five log reduction of overnight enzyme-treated bacteria, with serum complement playing an important role in these killing assays. Moreover, Dpo48 had a spectrum of activity exactly the same as its parental phage IME200, which was active against 10 out of 41 A. baumannii strains. Amino acid sequence alignment showed that the putative tail fiber proteins had a relatively short, highly conserved domain in their N-terminal sequences, but their amino acid sequences containing pectate lyase domains, found in the C-terminal regions, were highly diverse. Conclusions Phage-encoded capsule depolymerases may become promising antivirulence agents for preventing and controlling A. baumannii infections.
Collapse
Affiliation(s)
- Yannan Liu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Puyuan Li
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Huiying Liu
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Xin Yuan
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Wenkai Niu
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Ning Jiang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Jiménez-Guerra G, Heras-Cañas V, Gutiérrez-Soto M, Del Pilar Aznarte-Padial M, Expósito-Ruiz M, Navarro-Marí JM, Gutiérrez-Fernández J. Urinary tract infection by Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives. J Med Microbiol 2018; 67:790-797. [PMID: 29693543 DOI: 10.1099/jmm.0.000742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose. Acinetobacter baumannii and Pseudomonas aeruginosa are responsible for numerous nosocomial infections. The objective of this study was to determine the development of their susceptibility to ten antibiotics and the antibiotic consumption of patients with suspicion of urinary tract infection (UTI).Methodology. A retrospective study was conducted on the susceptibility profiles of A. baumannii and P. aeruginosa isolates from 749 urine samples gathered between January 2013 and December 2016, and on the consumption of imipenem, meropenem and piperacillin-tazobactam between 2014 and 2016.Results. Hospital patients were the source of 82 (91.1 %) of the 90 A. baumannii isolates detected and 555 (84.2 %) of the 659 P. aeruginosa isolates. Globally, the lowest percentage susceptibility values were found for fosfomycin, aztreonam and ciprofloxacin, while colistin continued to be the most active antibiotic in vitro. In 2016, the susceptibility of A. baumannii to carbapenem and piperacillin-tazobactam decreased to very low values, while the susceptibility of P. aeruginosa to carbapenem remained stable but its susceptibility to piperacillin-tazobactam decreased. There was a marked increase in the consumption of piperacillin-tazobactam.Conclusion. In our setting, it is no longer possible to use carbapenems and piperacillin-tazobactam for empirical treatment of UTI due to A. baumannii or to use piperacillin-tazobactam for empirical treatment of UTI due to P. aeruginosa. Colistin was found to be the most active antibiotic in vitro. There was a marked increase in the consumption of piperacillin-tazobactam.
Collapse
Affiliation(s)
- Gemma Jiménez-Guerra
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Victor Heras-Cañas
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | | | | | - Manuela Expósito-Ruiz
- Unidad de Metodología de la Investigación y Bioestadística. Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - José María Navarro-Marí
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - José Gutiérrez-Fernández
- Laboratorio de Microbiología, Hospital Virgen de las Nieves-Instituto de Investigación Biosanitaria de Granada, Granada, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Granada-Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| |
Collapse
|