1
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
2
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Cheng J, Liao Y, Dong Y, Hu H, Yang N, Kong X, Li S, Li X, Guo J, Qin L, Yu J, Ma C, Li J, Li M, Tang B, Yuan Z. Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy 2020; 16:2193-2205. [PMID: 32003282 PMCID: PMC7751565 DOI: 10.1080/15548627.2020.1719723] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Microglial activation-induced neuroinflammation is closely associated with the development of Parkinson disease (PD). Macroautophagy/autophagy regulates many biological processes, but the role of autophagy in microglial activation during PD development remains largely unclear. In this study, we showed that deletion of microglial Atg5 caused PD-like symptoms in mice, characterized by impairment in motor coordination and cognitive learning, loss of tyrosine hydroxylase (TH) neurons, enhancement of neuroinflammation and reduction in dopamine levels in the striatum. Mechanistically, we found that inhibition of autophagy led to NLRP3 (NLR family pyrin domain containing 3) inflammasome activation via PDE10A (phosphodiesterase 10A)-cyclic adenosine monophosphate (cAMP) signaling in microglia, and the sequential upregulation of downstream IL1B/IL-1β in turn increased the expression of MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]), a pro-inflammatory cytokine. Inhibition of NLRP3 inflammasome activation by administration of MCC950, a specific inhibitor for NLRP3, decreased MIF expression and neuroinflammatory levels, and rescued the loss of TH neurons in the substantial nigra (SN). Interestingly, we found that serum MIF levels in PD patients were significantly elevated. Taken together, our results reveal an important role of autophagy in microglial activation-driven PD-like symptoms, thus providing potential targets for the clinical treatment of PD. Abbreviations: ATG: autophagy related; cAMP: cyclic adenosine monophosphate; cKO: conditional knockout; NOS2/INOS: nitric oxide synthase 2, inducible; IL1B: interleukin 1 beta; ITGAM/CD-11b: integrin alpha M/cluster of differentiation molecule 11B; MAP1LC3: microtubule-associated protein 1 light chain 3; MIF: macrophage migration inhibitory factor (glycosylation-inhibiting factor); NLRP3: NLR family pyrin domain containing 3; PBS: phosphate-buffered saline; PD: parkinson disease; PDE10A: phosphodiesterase 10A; SN: substantial nigra; TH: tyrosine hydroxylase; TNF: tumor necrosis factor; WT: wild type.
Collapse
Affiliation(s)
- Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Yajin Liao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Nannan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangxi Kong
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shuoshuo Li
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Central South University, Changsha, Hunan, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiezhong Yu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jianke Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Mingtao Li
- Department of Pharmacology and the Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Central South University, Changsha, Hunan, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
4
|
Cahalane C, Bonezzi J, Shelestak J, Clements R, Boika A, Yun YH, Shriver LP. Targeted Delivery of Anti-inflammatory and Imaging Agents to Microglial Cells with Polymeric Nanoparticles. Mol Pharm 2020; 17:1816-1826. [DOI: 10.1021/acs.molpharmaceut.9b00489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Celina Cahalane
- Department of Chemistry, Knight Chemical Laboratories, University of Akron, Akron, Ohio 44325, United States
| | - Jason Bonezzi
- Department of Chemistry, Knight Chemical Laboratories, University of Akron, Akron, Ohio 44325, United States
| | - John Shelestak
- Department of Biological Sciences, Kent State University, Cunningham Hall, Kent, Ohio 44242, United States
| | - Robert Clements
- Department of Biological Sciences, Kent State University, Cunningham Hall, Kent, Ohio 44242, United States
| | - Aliaksei Boika
- Department of Chemistry, Knight Chemical Laboratories, University of Akron, Akron, Ohio 44325, United States
| | - Yang H. Yun
- Department of Biomedical Engineering, Olson Research Center, University of Akron, Akron, Ohio 44325, United States
| | - Leah P. Shriver
- Department of Chemistry, Knight Chemical Laboratories, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Russo I, Di Benedetto G, Kaganovich A, Ding J, Mercatelli D, Morari M, Cookson MR, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 controls protein kinase A activation state through phosphodiesterase 4. J Neuroinflammation 2018; 15:297. [PMID: 30368241 PMCID: PMC6204045 DOI: 10.1186/s12974-018-1337-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evidence indicates a cross-regulation between two kinases, leucine-rich repeat kinase 2 (LRRK2) and protein kinase A (PKA). In neurons, LRRK2 negatively regulates PKA activity in spiny projecting neurons during synaptogenesis and in response to dopamine D1 receptor activation acting as an A-anchoring kinase protein (AKAP). In microglia cells, we showed that LRRK2 kinase activity negatively regulates PKA, impacting NF-κB p50 signaling and the inflammatory response. Here, we explore the molecular mechanism underlying the functional interaction between LRRK2 and PKA in microglia. METHODS To understand which step of PKA signaling is modulated by LRRK2, we used a combination of in vitro and ex vivo systems with hyperactive or inactive LRRK2 as well as different readouts of PKA signaling. RESULTS We confirmed that LRRK2 kinase activity acts as a negative regulator of PKA activation state in microglia. Specifically, we found that LRRK2 controls PKA by affecting phosphodiesterase 4 (PDE4) activity, modulating cAMP degradation, content, and its dependent signaling. Moreover, we showed that LRRK2 carrying the G2019S pathological mutation downregulates PKA activation causing a reduction of PKA-mediated NF-κB inhibitory signaling, which results, in turn, in increased inflammation in LRRK2 G2019S primary microglia upon α-synuclein pre-formed fibrils priming. CONCLUSIONS Overall, our findings indicate that LRRK2 kinase activity is a key regulator of PKA signaling and suggest PDE4 as a putative LRRK2 effector in microglia. In addition, our observations suggest that LRRK2 G2019S may favor the transition of microglia toward an overactive state, which could widely contribute to the progression of the pathology in LRRK2-related PD.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, Padua, Italy
- Present Address: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Daniela Mercatelli
- Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|