1
|
Gujar G, Tiwari M, Yadav N, Monika D. Heat stress adaptation in cows - Physiological responses and underlying molecular mechanisms. J Therm Biol 2023; 118:103740. [PMID: 37976864 DOI: 10.1016/j.jtherbio.2023.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Heat stress is a key abiotic stressor for dairy production in the tropics which is further compounded by the ongoing climate change. Heat stress not only adversely impacts the production and welfare of dairy cows but severely impacts the economics of dairying due to production losses and increased cost of rearing. Over the years, selection has ensured development of high producing breeds, however, the thermotolerance ability of animals has been largely overlooked. In the past decade, the ill effects of climate change have made it pertinent to rethink the selection strategies to opt for climate resilient breeds, to ensure optimum production and reproduction. This has led to renewed interest in evaluation of the impacts of heat stress on cows and the underlying mechanisms that results in their acclimatization and adaptation to varied thermal ambience. The understanding of heat stress and associated responses at various level of animal is crucial to device amelioration strategies to secure optimum production and welfare of cows. With this review, an effort has been made to provide an overview on temperature humidity index as an important indicator of heat stress, general effect of heat stress in dairy cows, and impact of heat stress and subsequent response at physiological, haematological, molecular and genetic level of dairy cows.
Collapse
Affiliation(s)
- Gayatri Gujar
- Livestock Production Management, Bikaner, Rajasthan, 334001, India.
| | - Manish Tiwari
- Animal Biotechnology, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nistha Yadav
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Science, Bikaner, Rajasthan, 334001, India
| | - Dr Monika
- Veterinary Parasitology, Jaipur, Rajasthan, 302012, India
| |
Collapse
|
2
|
Satapathy PP, Mishra SR, Patnaik S, Behera SS, Mishra C, Kundu AK. Transcription pattern of key molecular chaperones in heat shocked caprine cardiac fibroblasts. Anim Biotechnol 2023; 34:1711-1718. [PMID: 35294843 DOI: 10.1080/10495398.2022.2043886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study was attempted to unveil the impact of heat stress on transcription pattern of major heat shock response genes in caprine cardiac fibroblasts. Cardiac tissues (n = 6) were collected and primary cardiac cell culture was done. Cultured cardiac fibroblasts were kept in an atmosphere of 5% CO2 and 95% air at 38.5 °C. Cardiac cells achieved 70-75% confluence after 72 hours of incubation. Heat stress was induced on confluent cardiac fibroblasts at 42 °C for 0 (control), 20, 60, 100 and 200 min. Quantitative RT-PCR for β2m (internal control), HSP60, HSP70, HSP90, and HSP110 was done and their transcription pattern was assessed by Pfaffl method. HSP60, HSP90, and HSP110 transcription did not differ at 20 min, up-regulated (p < 0.05) from 60 to 200 min and registered highest at 200 min of heat exposure. HSP70 transcription was gradually escalated (p < 0.05) time dependently from 20 to 200 min and reached zenith at 200 min of heat exposure. Differential induction in transcription of key molecular chaperones at various durations of heat exposure might reduce cardiac fibroblasts apoptosis and thus could maintain cardiac tissue function during heat stress.
Collapse
Affiliation(s)
- P P Satapathy
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S Patnaik
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S S Behera
- Department of Veterinary Surgery and Radiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - C Mishra
- Department of Animal Breeding & Genetics, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| |
Collapse
|
3
|
Bastaki NK, Albarjas TA, Almoosa FA, Al-Adsani AM. Chronic heat stress induces the expression of HSP genes in the retina of chickens (Gallus gallus). Front Genet 2023; 14:1085590. [PMID: 37077545 PMCID: PMC10106695 DOI: 10.3389/fgene.2023.1085590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Chronic heat stress during summer is a major challenge imposed by global warming. Chickens are more sensitive to heat stress than mammals because they lack sweat glands. Thus, chickens are more susceptible to heat stress during summer than other seasons. Induction of heat shock protein (HSP) genes is one of the primary defense mechanisms against heat stress. Tissue-specific responses exhibited by different classes of HSPs upon exposure to heat stress have been reported previously in different tissues including the heart, kidney, intestine, blood, and muscle, but not in the retina. Therefore, this study aimed to investigate the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress.Methods: This study was conducted during the summers of 2020 and 2021 in Kuwait. Chickens (Gallus gallus) were divided into control and heat-treated groups and sacrificed at different developmental stages. Retinas were extracted and analyzed by using Real Time quantitative Polymerase Chain Reaction (RT-qPCR).Results: Our results from the summer of 2021 were similar to that from the summer of 2020, regardless of whether GAPDH or RPL5 was used as a gene normalizer. All five HSP genes were upregulated in the retina of 21-day-old heat-treated chickens and stayed upregulated until 35 days of age, with the exception of HSP40, which was downregulated. The addition of two more developmental stages in the summer of 2021 showed that at 14 days, all HSP genes were upregulated in the retina of heat-treated chickens. In contrast, at 28 days, HSP27 and HSP40 were downregulated, whereas HSP60, HSP70, and HSP90 were upregulated. Furthermore, our results showed that under chronic heat stress, the highest upregulation of HSP genes was seen at the earliest developmental stages.Discussion: To the best of our knowledge, this is the first study to report the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress. Some of our results match the previously reported expression levels of some HSPs in other tissues under heat stress. These results suggest that HSP gene expression can be used as a biomarker for chronic heat stress in the retina.
Collapse
|
4
|
Sklifasovskaya AP, Blagonravov ML. Small Heat Shock Proteins HSP10 and HSP27 in the Left Ventricular Myocardium in Rats with Arterial Hypertension and Insulin-Dependent Diabetes Mellitus. Bull Exp Biol Med 2021; 170:699-705. [PMID: 33893951 DOI: 10.1007/s10517-021-05136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 11/25/2022]
Abstract
We studied the expression of small heat shock proteins HSP10 and HSP27 in left ventricular cardiomyocytes in animals with arterial hypertension, insulin-dependent diabetes mellitus, and their combination. The experiment was performed on 38-week-old male Wistar-Kyoto and 38-57-week-old SHR (spontaneously hypertensive) rats. Insulin-dependent diabetes mellitus was modeled by single parenteral injection of streptozotocin (65 mg/kg). Expression of HSP10 and HSP27 in left ventricular cardiomyocytes was evaluated by immunohistochemical assay. It was found that the content of HSP10 in the left ventricular cardiomyocytes decreased in comparison with the control in case of isolated diabetes mellitus and, on the contrary, increased in case of arterial hypertension combined with diabetes mellitus. The intensity of HSP27 expression decreased in case of 38-week arterial hypertension and a combination of arterial hypertension with diabetes mellitus. However, in case of 57-week arterial hypertension we observed an increase in the content of HSP27 in cardiomyocytes.
Collapse
Affiliation(s)
- A P Sklifasovskaya
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - M L Blagonravov
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
5
|
Cheng L, Yi X, Shi Y, Yu S, Zhang L, Wang J, Su P. Abnormal lipid metabolism induced apoptosis of spermatogenic cells by increasing testicular HSP60 protein expression. Andrologia 2020; 52:e13781. [PMID: 32892424 DOI: 10.1111/and.13781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Long-term consumption of high-fat and high-calorie foods not only causes obesity, but also may cause a decline in sperm quality in men. Rats with abnormal lipid metabolism (high-fat rats) were established by high-fat diet for 24 weeks. HE staining was used to observe the morphological changes of testis in rats, TUNEL and flow cytometer was used to detect the cell apoptosis in rat testis and in vitro. Immunohistochemistry and Western blotting were used to detect the expression of protein. After 24 weeks of high-fat food feeding, the body weight, serum lipids and number of apoptotic spermatogenic cells in the high-fat group rat were significantly higher than those in the control group. In vivo, the expression of HSP60 protein in testis of high-fat rats was positive related to apoptosis of spermatogenic cells, cleaved caspase 3/caspase 3 protein expression and Bax/Bcl2 protein expression in testis of high-fat rats. Proportion of apoptotic spermatogenic cells was increased by up-regulation of HSP60 protein expression in vitro. Long-term consumption of high-fat diets can cause high expression of HSP60 and spermatogenic cells apoptosis in rats, while HSP60 over-expression promotes spermatogenic cell apoptosis and MAPK signal pathway in vitro.
Collapse
Affiliation(s)
- Lixian Cheng
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Xue Yi
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Ying Shi
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Shuwei Yu
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Liyuan Zhang
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Jie Wang
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Ping Su
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| |
Collapse
|
6
|
Sahu S, Mishra SR, Kundu AK. Impact of thermal stress on expression dynamics of HSP60 in cardiac fibroblast cells of goat. Anim Biotechnol 2019; 32:327-333. [PMID: 31779521 DOI: 10.1080/10495398.2019.1696353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was aimed to determine the impact of thermal stress on expression dynamics of heat shock protein 60 (HSP60) mRNA in cultured cardiac fibroblast cells of the goat. The heart tissues (n = 6) from different goats were used for the culture study. The cardiac fibroblast cells were cultured and subjected to thermal stress at 42 °C for 0, 20, 60 and 100 min. The relative abundance of HSP60 mRNA was assessed by quantitative real-time PCR (qRT-PCR). The cardiac cells exposed to thermal stress at 42 °C for 0 min was taken as control. The relative abundance of HSP60 mRNA did not change at 20 min of thermal stress as compared to control. Thereafter, the relative abundance of HSP60 mRNA was significantly up-regulated (p < 0.05) at 60 min and 100 min of thermal stress. However, the highest mRNA expression of HSP60 was noticed at 100 min of thermal stress. The present study indicates that, thermal stress modulates the mRNA expression HSP60 in cultured caprine cardiac fibroblast cells.
Collapse
Affiliation(s)
- S Sahu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| |
Collapse
|
7
|
Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, Li Y, Tang H, Wang G, Fang X, Liu J, Jia N, Chen J, Ouyang K. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ 2019; 27:587-600. [PMID: 31209364 PMCID: PMC7205885 DOI: 10.1038/s41418-019-0374-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
To maintain healthy mitochondrial enzyme content and function, mitochondria possess a complex protein quality control system, which is composed of different endogenous sets of chaperones and proteases. Heat shock protein 60 (HSP60) is one of these mitochondrial molecular chaperones and has been proposed to play a pivotal role in the regulation of protein folding and the prevention of protein aggregation. However, the physiological function of HSP60 in mammalian tissues is not fully understood. Here we generated an inducible cardiac-specific HSP60 knockout mouse model, and demonstrated that HSP60 deletion in adult mouse hearts altered mitochondrial complex activity, mitochondrial membrane potential, and ROS production, and eventually led to dilated cardiomyopathy, heart failure, and lethality. Proteomic analysis was performed in purified control and mutant mitochondria before mutant hearts developed obvious cardiac abnormalities, and revealed a list of mitochondrial-localized proteins that rely on HSP60 (HSP60-dependent) for correctly folding in mitochondria. We also utilized an in vitro system to assess the effects of HSP60 deletion on mitochondrial protein import and protein stability after import, and found that both HSP60-dependent and HSP60-independent mitochondrial proteins could be normally imported in mutant mitochondria. However, the former underwent degradation in mutant mitochondria after import, suggesting that the protein exhibited low stability in mutant mitochondria. Interestingly, the degradation could be almost fully rescued by a non-specific LONP1 and proteasome inhibitor, MG132, in mutant mitochondria. Therefore, our results demonstrated that HSP60 plays an essential role in maintaining normal cardiac morphology and function by regulating mitochondrial protein homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- Feifei Fan
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yaoyun Duan
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Feili Yang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Christa Trexler
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hong Wang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Lei Huang
- Shenzhen Peking University Hospital, 518055, Shenzhen, China
| | - Yali Li
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Huayuan Tang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Gang Wang
- Department of Pathophysiology, School of Medicine, Shenzhen University, 518055, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, 518055, Shenzhen, China
| | - Nan Jia
- Shenzhen People's Hospital, 518055, Shenzhen, China
| | - Ju Chen
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Kunfu Ouyang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
8
|
Guan M, Zhang Y, Huang Q, He L, Fang Q, Zhang J, Gao S, Fang J, Ma Y, Su K, Gao X. Fetal bovine serum inhibits neomycin-induced apoptosis of hair cell-like HEI-OC-1 cells by maintaining mitochondrial function. Am J Transl Res 2019; 11:1343-1358. [PMID: 30972166 PMCID: PMC6456536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Aging and exposure to noise or ototoxic drugs are major causes of hair cell death leading to human hearing loss, and many agents have been developed to protect hair cells from apoptosis. Fetal bovine serum (FBS) is a fundamental ingredient in the culture medium of hair cell-like House Ear Institute Organ of Corti 1 (HEI-OC-1) cells, but there have been no reports about the function of FBS in HEI-OC-1 cell apoptosis. In this study, we found that FBS deprivation alone significantly increased HEI-OC-1 cell apoptosis in the absence of neomycin exposure and that the presence of FBS significantly inhibited HEI-OC-1 cell apoptosis after neomycin exposure compared to FBS-deprived cells. Further, we found that the protective effect of FBS was dose dependent and more effective than the growth factors B27, N2, EGF, bFGF, IGF-1, and heparan sulfate. We also found that FBS deprivation significantly disrupted the expression level of mitochondrial proteins, increased pro-apoptotic gene expression, decreased the mitochondrial membrane potential, and increased reactive oxygen species accumulation in HEI-OC-1 cells after neomycin exposure. These findings indicate that FBS is involved in maintaining the level of mitochondrial proteins, maintaining the balance of oxidant gene expression, and preventing the accumulation of ROS, and thus FBS maintains normal mitochondrial function and inhibits apoptosis in HEI-OC-1 cells after neomycin exposure.
Collapse
Affiliation(s)
- Ming Guan
- Department of Otolaryngology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310006, China
- Department of Otolaryngology, The Affiliated Hangzhou Hospital of Nanjing Medical UniversityHangzhou 310006, China
- Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, China
| | - Yuhua Zhang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Qiusheng Huang
- Department of Otolaryngology, The Affiliated Hospital of Jiangsu UniversityZhenjiang 212002, China
| | - Li He
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Qiaojun Fang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Jie Zhang
- Department of Pediatrics, Hangzhou Children’s HospitalHangzhou 310000, China
| | - Song Gao
- Department of Otolaryngology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang 212002, China
| | - Jia Fang
- Department of Otolaryngology, Head-Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200230, China
| | - Yongming Ma
- Department of Otolaryngology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang 212002, China
| | - Kaiming Su
- Department of Otolaryngology, Head-Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai 200230, China
| | - Xia Gao
- Department of Otolaryngology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, China
- Department of Otolaryngology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, China
- Research Institution of OtorhinolaryngologyNo. 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
9
|
Parida S, Mishra SR, Mishra C, Mohapatra S, Dalai N, Mahapatra APK, Kundu AK. Impact of heat stress on transcriptional abundance of HSP70 in cardiac cells of goat. Anim Biotechnol 2019; 31:223-228. [PMID: 30857447 DOI: 10.1080/10495398.2019.1583574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The present study was aimed to document the effect of heat stress on the transcriptional abundance of heat shock protein 70 (HSP70) mRNA in cultured cardiac cells of goat. The heart tissues (n = 6) from different goats were used for the culture study. The cardiac cells obtained from different heart tissues were cultured in 24 well cell culture plates and incubated in a humidified CO2 (5%) incubator at 37 °C. The cardiac cells were allowed to become 75-80% confluent after 72 h of incubation. Thereafter, the cardiac cells were subjected to heat exposure at 42 °C (heat exposed) for 0, 20, 60 and 100 min. The cardiac cells exposed to heat stress at 42 °C for 0 min was taken as control. The relative abundance of HSP70 mRNA was gradually up-regulated (p < .05) from 20 to 100 min of heat exposure and reached the zenith (p < .05) at 100 min of heat challenge. The present finding highlights that, HSP70 could possibly act as a cytoprotective factor and may promote cardiac cell survival against the detrimental effect of heat stress. Moreover, this study may serve as the harbinger to conduct further research work on expression kinetics of HSP70 in cardiac cells of goat including other livestock species.
Collapse
Affiliation(s)
- S Parida
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - C Mishra
- Department of Animal Genetics & Breeding, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S Mohapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - N Dalai
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A P K Mahapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| |
Collapse
|
10
|
Parida S, Mishra SR, Mishra C, Dalai N, Mohapatra S, Mahapatra APK, Kundu AK. Impact of heat stress on expression kinetics of HSP27 in cardiac cells of goats. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1564578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- S. Parida
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S. R. Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - C. Mishra
- Department of Animal Genetics & Breeding, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - N. Dalai
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - S. Mohapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A. P. K. Mahapatra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| | - A. K. Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, India
| |
Collapse
|
11
|
Marino Gammazza A, Macaluso F, Di Felice V, Cappello F, Barone R. Hsp60 in Skeletal Muscle Fiber Biogenesis and Homeostasis: From Physical Exercise to Skeletal Muscle Pathology. Cells 2018; 7:cells7120224. [PMID: 30469470 PMCID: PMC6315887 DOI: 10.3390/cells7120224] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
Hsp60 is a molecular chaperone classically described as a mitochondrial protein with multiple roles in health and disease, participating to the maintenance of protein homeostasis. It is well known that skeletal muscle is a complex tissue, rich in proteins, that is, subjected to continuous rearrangements, and this homeostasis is affected by many different types of stimuli and stresses. The regular exercise induces specific histological and biochemical adaptations in skeletal muscle fibers, such as hypertrophy and an increase of mitochondria activity and oxidative capacity. The current literature is lacking in information regarding Hsp60 involvement in skeletal muscle fiber biogenesis and regeneration during exercise, and in disease conditions. Here, we briefly discuss the functions of Hsp60 in skeletal muscle fibers during exercise, inflammation, and ageing. Moreover, the potential usage of Hsp60 as a marker for disease and the evaluation of novel treatment options is also discussed. However, some questions remain open, and further studies are needed to better understand Hsp60 involvement in skeletal muscle homeostasis during exercise and in pathological condition.
Collapse
Affiliation(s)
- Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| | - Filippo Macaluso
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
- Department of SMART Engineering Solutions & Technologies, eCampus University, 22060 Novedrate, Italy.
| | - Valentina Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| |
Collapse
|
12
|
Lichardusova L, Tatarkova Z, Calkovska A, Mokra D, Engler I, Racay P, Lehotsky J, Kaplan P. Proteomic analysis of mitochondrial proteins in the guinea pig heart following long-term normobaric hyperoxia. Mol Cell Biochem 2017; 434:61-73. [PMID: 28432557 DOI: 10.1007/s11010-017-3037-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
Normobaric hyperoxia is applied for the treatment of a wide variety of diseases and clinical conditions related to ischemia or hypoxia, but it can increase the risk of tissue damage and its efficiency is controversial. In the present study, we analyzed cardiac mitochondrial proteome derived from guinea pigs after 60 h exposure to 100% molecular oxygen (NBO) or O2 enriched with oxygen cation (NBO+). Two-dimensional gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry identified twenty-two different proteins (among them ten nonmitochondrial) that were overexpressed in NBO and/or NBO+ group. Identified proteins were mainly involved in cellular energy metabolism (tricarboxylic acid cycle, oxidative phosphorylation, glycolysis), cardioprotection against stress, control of mitochondrial function, muscle contraction, and oxygen transport. These findings support the viewpoint that hyperoxia is associated with cellular stress and suggest complex adaptive responses which probably contribute to maintain or improve intracellular ATP levels and contractile function of cardiomyocytes. In addition, the results suggest that hyperoxia-induced cellular stress may be partially attenuated by utilization of NBO+ treatment.
Collapse
Affiliation(s)
- Lucia Lichardusova
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Ivan Engler
- Department of Physiology, PJ Safarik University, Faculty of Medicine, Kosice, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia.
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4D, SK-036 01, Martin, Slovakia.
| |
Collapse
|