1
|
Ma X, Liu Z, Ilyas I, Little PJ, Kamato D, Sahebka A, Chen Z, Luo S, Zheng X, Weng J, Xu S. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 2021; 17:2050-2068. [PMID: 34131405 PMCID: PMC8193264 DOI: 10.7150/ijbs.59965] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Peter J Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebka
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
2
|
Exendin-4 Exacerbates Burn-Induced Morbidity in Mice by Activation of the Sympathetic Nervous System. Mediators Inflamm 2019; 2019:2750528. [PMID: 30800001 PMCID: PMC6360064 DOI: 10.1155/2019/2750528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background Although glucagon-like peptide 1- (GLP-1-) based therapy of hyperglycemia in burn injury has shown great potential in clinical trials, its safety is seldom evaluated. We hypothesize that exendin-4, a GLP-1 analogue, might affect the immune response via the activation of the sympathetic nervous system in burn injury. Methods Male Balb/c mice were subjected to sham or thermal injury of 15% total body surface area. Exendin-4 on T cell function in vitro was examined in cultured splenocytes in the presence of β-adrenoceptor antagonist propranolol (1 nmol/L) or GLP-1R antagonist exendin (9-39) (1 μmol/L), whereas its in vivo effect was determined by i.p. injection of exendin-4 (2.4 nmol/kg) in mice. To further elucidate the sympathetic mechanism, propranolol (30 mg/kg) or vehicle was applied 30 min prior to injury. Results Although the exacerbated burn-induced mortality by exendin-4 was worsened by propranolol pretreatment, the inhibition of T cell proliferation by exendin-4 in vitro could be restored by propranolol instead of exendin (9-39). However, a Th2 switch by exendin-4 in vitro could only be reversed by exendin (9-39). Likewise, the inhibition of splenic T cell function and NFAT activity by exendin-4 in vivo was restored by propranolol. By contrast, the increased splenic NF-κB translocation by exendin-4 in vivo was potentiated by propranolol in sham mice but suppressed in burn mice. Accordingly, propranolol abrogated the heightened inflammatory response in the lung and the accelerated organ injuries by exendin-4 in burn mice. On the contrary, a Th2 switch and higher serum levels of inflammatory mediators by exendin-4 were potentiated by propranolol in burn mice. Lastly, exendin-4 raised serum stress hormones which could be remarkably augmented by propranolol. Conclusions Exendin-4 suppresses T cell function and promotes organ inflammation through the activation of the sympathetic nervous system, while elicits Th2 switch via GLP-1R in burn injury.
Collapse
|