1
|
Clim A, Maranduca MA, Filip N, Tănase DM, Floria M, Pinzariu AC, Popa IP, Nemteanu R, Cozma TC, Faur FI, Serban DN, Scripcariu DV, Serban IL. The Influence of Atorvastatin Treatment on Homocysteine Metabolism and Oxidative Stress in an Experimental Model of Diabetic Rats. Life (Basel) 2024; 14:1414. [PMID: 39598213 PMCID: PMC11595749 DOI: 10.3390/life14111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE In our experimental study, we evaluated the influence of treatment with atorvastatin on the antioxidant activity of intracellular and extracellular systems factors, homocysteine levels (Hcy), and lipid profiles in obese and diabetic rats. METHOD Twenty-one male Wistar rats, aged 6 months, 450-550 g, were allocated into three groups. From the beginning of the study, the first group (G-I, control) received only standard food, while the second and third groups (G II-obese, G III-diabetic) were administered a high-fat diet (HFD) with 2% cholesterol. After 2 weeks of accommodation, the specimens in G-III were injected intraperitoneal (i.p.) streptozotocin (35 mg of body weight, pH 4.5), intervention followed by the onset of type 2 diabetes mellitus. Following confirmation of diabetes onset, the specimens in G III were administered concomitantly with the HFD a daily gavage of atorvastatin 20 mg of body weight/day for 20 days. We measured, at the beginning and the end of the study, the Hcy levels, lipid profile, vitamin B12, B6, folic acid, and various parameters of oxidative stress (OS)-total antioxidant status (TAS), glutathione peroxidase (GPX) and superoxide dismutase (SOD). RESULTS After treatment with atorvastatin, the lipid profile in G III significantly improved compared to the other two groups, but enzymatic markers of oxidative stress did not closely parallel this trend. However, after the treatment of statin, we observed an important reduction in Hcy values. CONCLUSION Our results demonstrate that treatment with atorvastatin can be used not only for its lipid-lowering properties and antioxidant effects but also to reduce Hcy concentration in this experimental model of diabetic rats. Moreover, atorvastatin therapy improves lipid profiles, reduces inflammation, suppresses oxidation, and decreases Hcy levels, potentially preventing major adverse cardiovascular events.
Collapse
Affiliation(s)
- Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (M.A.M.); (A.C.P.); (I.P.P.); (T.C.C.); (D.N.S.); (I.L.S.)
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (M.A.M.); (A.C.P.); (I.P.P.); (T.C.C.); (D.N.S.); (I.L.S.)
- Internal Medicine Clinic, “St Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
| | - Nina Filip
- Department of Morpho-Functional Sciences II, Discipline of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Maria Tănase
- Internal Medicine Clinic, “St Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Mariana Floria
- Internal Medicine Clinic, “St Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania;
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (M.A.M.); (A.C.P.); (I.P.P.); (T.C.C.); (D.N.S.); (I.L.S.)
| | - Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (M.A.M.); (A.C.P.); (I.P.P.); (T.C.C.); (D.N.S.); (I.L.S.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Roxana Nemteanu
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iași, Romania
| | - Tudor Cristian Cozma
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (M.A.M.); (A.C.P.); (I.P.P.); (T.C.C.); (D.N.S.); (I.L.S.)
| | - Flaviu Ionut Faur
- 2nd Surgery Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania;
- X Department of General Surgery, “Victor Babes University of Medicine and Pharmacy”, 300041 Timisoara, Romania
- Multidisciplinary Doctoral School “Vasile Goldis”, Western University of Arad, 310025 Arad, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (M.A.M.); (A.C.P.); (I.P.P.); (T.C.C.); (D.N.S.); (I.L.S.)
| | - Dragoș Viorel Scripcariu
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania
- 1st Surgical Oncology Unit, Regional Institute of Oncology, 2–4 General Henri Mathias Berthelot Street, 700483 Iași, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.C.); (M.A.M.); (A.C.P.); (I.P.P.); (T.C.C.); (D.N.S.); (I.L.S.)
| |
Collapse
|
2
|
Li Y, Song Y, Shi Z, Hou H, Yu Y, Pan F, Ji J, Chen Z. Syrosingopine and UK5099 synergistically suppress non-small cell lung cancer by activating the integrated stress response. Cell Death Dis 2024; 15:431. [PMID: 38898028 PMCID: PMC11187063 DOI: 10.1038/s41419-024-06821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Non-small cell lung cancer (NSCLC) presents a global health challenge due to its low five-year survival rates, underscoring the need for novel therapeutic strategies. Our research explored the synergistic mechanisms of syrosingopine and UK-5099 in treating NSCLC. In vitro experiments showed that the combination of syrosingopine and UK-5099 significantly synergized to suppress NSCLC proliferation. Further experiments revealed that this combination induced cell cycle arrest and promoted apoptosis in NSCLC cells. In vivo experiments demonstrated that the combination of syrosingopine and UK-5099 markedly inhibited tumor growth. Mechanistic studies revealed that this drug combination promoted mitochondrial damage by inducing lactate accumulation and oxidative stress. Additionally, the combination triggered an integrated stress response (ISR) through the activation of heme-regulated inhibitor kinase (HRI). Importantly, our findings suggested that the synergistic suppression of NSCLC by syrosingopine and UK-5099 was dependent on ISR activation. In summary, our study proposed a promising therapeutic approach that involved the combination of Syrosingopine and UK-5099 to activate ISR, significantly hindering NSCLC growth and proliferation.
Collapse
Affiliation(s)
- Yiman Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijing Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijie Hou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yu
- Department of Respiratory Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Fei Pan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinlu Ji
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Dalla Tiezza M, Hamlin TA, Bickelhaupt FM, Orian L. Radical Scavenging Potential of the Phenothiazine Scaffold: A Computational Analysis. ChemMedChem 2021; 16:3763-3771. [PMID: 34536069 PMCID: PMC9292796 DOI: 10.1002/cmdc.202100546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/05/2021] [Indexed: 01/05/2023]
Abstract
The reactivity of phenothiazine (PS), phenoselenazine (PSE), and phenotellurazine (PTE) with different reactive oxygen species (ROS) has been studied using density functional theory (DFT) in combination with the QM-ORSA (Quantum Mechanics-based Test for Overall Free Radical Scavenging Activity) protocol for an accurate kinetic rate calculation. Four radical scavenging mechanisms have been screened, namely hydrogen atom transfer (HAT), radical adduct formation (RAF), single electron transfer (SET), and the direct oxidation of the chalcogen atom. The chosen ROS are HO. , HOO. , and CH3 OO. . PS, PSE, and PTE exhibit an excellent antioxidant activity in water regardless of the ROS due to their characteristic diffusion-controlled regime processes. For the HO. radical, the primary active reaction mechanism is, for all antioxidants, RAF. But, for HOO. and CH3 OO. , the dominant mechanism strongly depends on the antioxidant: HAT for PS and PSE, and SET for PTE. The scavenging efficiency decreases dramatically in lipid environment and remains only significant (via RAF) for the most reactive radical (HO. ). Therefore, PS, PSE, and PTE are excellent antioxidant molecules, especially in aqueous, physiological environments where they are active against a broad spectrum of harmful radicals. There is no advantage or significant difference in the scavenging efficiency when changing the chalcogen since the reactivity mainly derives from the amino hydrogen and the aromatic sites.
Collapse
Affiliation(s)
- Marco Dalla Tiezza
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
4
|
Muraro C, Polato M, Bortoli M, Aiolli F, Orian L. Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol. J Chem Phys 2020; 153:114117. [DOI: 10.1063/5.0013278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Cecilia Muraro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Mirko Polato
- Dipartimento di Matematica “Tullio Levi-Civita,” Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabio Aiolli
- Dipartimento di Matematica “Tullio Levi-Civita,” Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Ribaudo G, Bortoli M, Ongaro A, Oselladore E, Gianoncelli A, Zagotto G, Orian L. Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts. RSC Adv 2020; 10:18583-18593. [PMID: 35518299 PMCID: PMC9053872 DOI: 10.1039/d0ra03509b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fluoxetine finds application in the treatment of depression and mood disorders. This selective serotonin-reuptake inhibitor (SSRI) also contrasts oxidative stress by direct ROS scavenging, modulation of the endogenous antioxidant defense system, and/or enhancement of the serotonin antioxidant capacity. We synthesised some fluoxetine analogues incorporating a selenium nucleus, thus expanding its antioxidant potential by enabling a hydroperoxides-inactivating, glutathione peroxidase (GPx)-like activity. Radical scavenging and peroxidatic activity were combined in a water-soluble, drug-like, tandem antioxidant molecule. Selenofluoxetine derivatives were reacted with H2O2 in water, and the mechanistic details of the reaction were unravelled combining nuclear magnetic resonance (NMR), electrospray ionisation-mass spectrometry (ESI-MS) and quantum chemistry calculations. The observed oxidation–elimination process led to the formation of seleninic acid and cinnamylamine in a trans-selective manner. This mechanism is likely to be extended to other substrates for the preparation of unsaturated cinnamylamines. We modified fluoxetine by incorporating a selenium nucleus enabling a hydroperoxide-inactivating, glutathione peroxidase (GPx)-like activity and paving the way for its use as green catalyst.![]()
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alberto Ongaro
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Erika Oselladore
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
6
|
Herbet M, Natorska-Chomicka D, Ostrowska M, Gawrońska-Grzywacz M, Izdebska M, Piątkowska-Chmiel I, Korga A, Wróbel A, Dudka J. Edaravone presents antidepressant-like activity in corticosterone model of depression in mice with possible role of Fkbp5, Comt, Adora1 and Slc6a15 genes. Toxicol Appl Pharmacol 2019; 380:114689. [DOI: 10.1016/j.taap.2019.114689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
7
|
Major Depressive Disorder and Oxidative Stress: In Silico Investigation of Fluoxetine Activity against ROS. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major depressive disorder is a psychiatric disease having approximately a 20% lifetime prevalence in adults in the United States (U.S.), as reported by Hasin et al. in JAMA Psichiatry 2018 75, 336–346. Symptoms include low mood, anhedonia, decreased energy, alteration in appetite and weight, irritability, sleep disturbances, and cognitive deficits. Comorbidity is frequent, and patients show decreased social functioning and a high mortality rate. Environmental and genetic factors favor the development of depression, but the mechanisms by which stress negatively impacts on the brain are still not fully understood. Several recent works, mainly published during the last five years, aim at investigating the correlation between treatment with fluoxetine, a non-tricyclic antidepressant drug, and the amelioration of oxidative stress. In this work, the antioxidant activity of fluoxetine was investigated using a computational protocol based on the density functional theory approach. Particularly, the scavenging of five radicals (HO•, HOO•, CH3OO•, CH2=CHOO•, and CH3O•) was considered, focusing on hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. Thermodynamic as well as kinetic aspects are discussed, and, for completeness, two metabolites of fluoxetine and serotonin, whose extracellular concentration is enhanced by fluoxetine, are included in our analysis. Indeed, fluoxetine may act as a radical scavenger, and exhibits selectivity for HO• and CH3O•, but is inefficient toward peroxyl radicals. In contrast, the radical scavenging efficiency of serotonin, which has been demonstrated in vitro, is significant, and this supports the idea of an indirect antioxidant efficiency of fluoxetine.
Collapse
|
8
|
|
9
|
Kędzierska E, Fiorino F, Gibuła E, Corvino A, Giordano F, Herbet M, Dudka J, Poleszak E, Wlaź P, Kotlińska JH. Anxiolytic‐like effects of the new arylpiperazine derivatives containing isonicotinic and picolinic nuclei: behavioral and biochemical studies. Fundam Clin Pharmacol 2019; 33:254-266. [DOI: 10.1111/fcp.12443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 4a 20‐093 Lublin Poland
| | - Ferdinando Fiorino
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Ewa Gibuła
- Department of Pharmacology and Pharmacodynamics Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 4a 20‐093 Lublin Poland
| | - Angela Corvino
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Flavia Giordano
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Mariola Herbet
- Department of Toxicology Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 8 20‐093 Lublin Poland
| | - Jarosław Dudka
- Department of Toxicology Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 8 20‐093 Lublin Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 1 20‐093 Lublin Poland
| | - Piotr Wlaź
- Department of Animal Physiology Faculty of Biology and Biotechnology Maria Curie‐Skłodowska University Akademicka 19 20‐033 Lublin Poland
| | - Jolanta H. Kotlińska
- Department of Pharmacology and Pharmacodynamics Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 4a 20‐093 Lublin Poland
| |
Collapse
|
10
|
Kaviani E, Rahmani M, Kaeidi A, Shamsizadeh A, Allahtavakoli M, Mozafari N, Fatemi I. Protective effect of atorvastatin on d-galactose-induced aging model in mice. Behav Brain Res 2017; 334:55-60. [PMID: 28750834 DOI: 10.1016/j.bbr.2017.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Abstract
Atorvastatin (Ator), competitive inhibitors of 3-hydroxymethyl-3-glutaryl-coenzyme-A reductase, is a cholesterol lowering drug. Ator has been shown to have neuroprotective, antioxidant and anti-inflammatory properties making that a potential candidate for the treatment of central nervous system (CNS) disorders. Here we assessed the effect of Ator on the d-galactose (d-gal)-induced aging in mice. For this purpose, Ator (0.1 and 1mg/kg/p.o.), was administrated daily in d-gal-received (500mg/kg/p.o.) mice model of aging for six weeks. Anxiety-like behaviors and cognitive functions were evaluated by the elevated plus-maze and novel object recognition tasks, respectively. Physical power was assessed by forced swimming capacity test. Animals brains were analyzed for the superoxide dismutase (SOD) and brain-derived neurotrophic factor (BDNF). We found that Ator decreases the anxiety-like behaviors in d-gal-treated mice. Also, our behavioral tests showed that Ator reverses the d-gal induced learning and memory impairment. Furthermore, we found that Ator increases the physical power of d-gal-treated mice. Our results indicated that the neuroprotective effect of Ator on d-gal induced neurotoxicity is mediated, at least in part, by an increase in the SOD and BDNF levels. The results of present study suggest that Ator could be used as a novel therapeutic strategy for the treatment of age-related conditions.
Collapse
Affiliation(s)
- Elham Kaviani
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammadreza Rahmani
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohamad Allahtavakoli
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Mozafari
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|