1
|
Hu S, Wen J, Fan XD, Li P. Study on therapeutic mechanism of total salvianolic acids against myocardial ischemia-reperfusion injury based on network pharmacology, molecular docking, and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117902. [PMID: 38360382 DOI: 10.1016/j.jep.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae miltiorrhizae, also known as Danshen in Chinese, effectively activates the blood and resolves stasis. Total salvianolic acids (SA) is the main active ingredient of Danshen, and related preparations, such as salvianolate injection are commonly used clinically to treat myocardial ischemia-reperfusion injury (MIRI). However, the potential targets and key active ingredients of SA have not been sufficiently investigated. AIM OF THE STUDY This study aimed to investigate the mechanism of action of SA in treating MIRI. MATERIALS AND METHODS Network pharmacology and molecular docking techniques were used to predict SA targets against MIRI. The key acting pathway of SA were validated by performing experiments in a rat MIRI model. RESULTS Twenty potential ingredients and 54 targets of SA in treating MIRI were identified. Ingredient-target-pathway network analysis revealed that salvianolic acid B and rosmarinic acid had the highest degree value. Pathway enrichment analysis showed that SA may regulate MIRI through the IL-17 signaling pathway, and this result was confirmed in the rat MIRI experiment. CONCLUSION The results of this study indicate that SA may protect MIRI by regulating the IL-17 pathway.
Collapse
Affiliation(s)
- Shuang Hu
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Wen
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-di Fan
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| | - Peng Li
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| |
Collapse
|
2
|
Ding Y, Wang X, Ji J, Zhang X, Chen M, Li S, Zhang Q, Liu P. (( E)- N-(4-(((2-Amino-5-phenylpyridin-3-yl)imino)methyl)pyridin-2-yl)cyclopropanecarboxamide) Ameliorated Aβ 1-42-Induced Alzheimer's Disease in SD Rats by Inhibiting Oxidative Stress and Apoptosis. ACS Chem Neurosci 2021; 12:640-650. [PMID: 33517657 DOI: 10.1021/acschemneuro.0c00655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Our study investigated the protective effects of ((E)-N-(4-(((2-amino-5-phenylpyridin-3-yl)imino)methyl)pyridin-2-yl)cyclopropanecarboxamide) 9b, a novel glycogen synthase kinase-3β (GSK-3β) inhibitor, on the learning and memory function of rats with amyloid-β1-42 (Aβ1-42)-induced Alzheimer's disease (AD) and explored the possible mechanisms. Sixty male Sprague-Dawley (SD) rats were randomly divided into five groups: the control, Aβ, donepezil, and low-dose and high-dose 9b groups. The rats in the Aβ, donepezil, and two 9b intervention groups received a single microinjection of 10 μg of Aβ1-42 into the hippocampus followed by intragastric administration of 0.5% sodium carboxymethyl cellulose (CMC-Na), 12 (mg/kg)/d donepezil hydrochloride and 6 or 18 (mg/kg)/d compound 9b for 28 days, while the rats in the control group were treated with the vehicles. Learning and memory impairment were attenuated, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), acetylcholinesterase (AChE), and adenosine triphosphatase (ATPase) in the brain tissue were significantly increased (p < 0.05), and the concentrations of Aβ1-42, phospho-tau (p-tau), and malondialdehyde (MDA) in the brain tissue were significantly decreased (p < 0.05) in the compound 9b group compared to the Aβ group. In addition, compound 9b regulated the imbalance in the concentrations of neurotransmitters and alleviated severe damage and apoptosis in the brains of the rats exposed to Aβ1-42. The novel GSK-3β inhibitor 9b could improve learning and memory dysfunction caused by Aβ1-42 through its antioxidant and antiapoptotic effects.
Collapse
Affiliation(s)
- Yun Ding
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jing Ji
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuejiao Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengdi Chen
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuling Li
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiongyao Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Chen C, Zhu P, Yu H, Huang B, Gui M, Lin X, Bai Y. Exploration of the effect of salvianolate on myocardial infarction in rats based on tandem mass tags. Eur J Pharmacol 2020; 889:173610. [DOI: 10.1016/j.ejphar.2020.173610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022]
|
4
|
The Effect of Salvianolic Acid on Vascular Protection and Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5472096. [PMID: 33062143 PMCID: PMC7533016 DOI: 10.1155/2020/5472096] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 01/29/2023]
Abstract
Salvia miltiorrhiza (Danshen), as an important traditional Chinese medicinal plant, has been used in China for the treatment of cardiovascular diseases for hundreds of years. Salvianolic acids (salvianolic acid A and salvianolic acid B) as the most abundant water-soluble component extracted from Salvia miltiorrhiza have attracted more and more attention from cardiovascular scientists due to its comprehensive cardiovascular actions. In vivo and in vitro studies have rendered salvianolic acid an excellent drug candidate for the treatment and prevention of cardiovascular diseases. In this review, we surveyed the protective effects of salvianolic acid A and salvianolic acid B against cardiovascular diseases and the pharmacological basis, providing a strong scientific rationale for elucidating the important role of Salvia miltiorrhiza in cardiovascular therapy. More importantly, we also hope to provide new inspiration and perspectives on the development and innovation of small-molecule cardiovascular drugs based on salvianolic acid.
Collapse
|
5
|
Effect of miR-26a-5p targeting ADAM17 gene on apoptosis, inflammatory factors and oxidative stress response of myocardial cells in hypoxic model. J Bioenerg Biomembr 2020; 52:83-92. [PMID: 32170604 DOI: 10.1007/s10863-020-09829-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022]
Abstract
The aim of this study was to explore the effect of miR-26a-5p targeting and regulating ADAM17 gene on myocardial cells in hypoxic model. Myocardial cells from 1 day old Sprague-Dawley rats were isolated and cultured for 3 days, and were used for experiment. The hypoxia model of myocardial cells was established after cell grouping transfection. The targeting relationship between miR-26a-5p and ADAM17 was verified by bioinformatics website prediction and double luciferase report experiment. The double luciferase report experiment showed that miR-26a-5p had a targeted relationship with ADAM17, and miR-26a-5p could target and bind ADAM17, down-regulate its expression, and the transfection efficiency of each group was good (P < 0.05). After overexpression of miR-26a-5p, cell activity was increased (P < 0.05), apoptosis was decreased (P < 0.05), and the expression levels of TNF-α, IL-1β and IL-6 were significantly decreased (all P < 0.05). The release of creatine kinase-MB and the expression level of malondialdehyde were significantly decreased (both P < 0.05), and the expression level of superoxide dismutase was significantly increased (all P < 0.05). After overexpression of ADAM17, the results were reversed (all P < 0.05). MiR-26a-5p could target and regulate ADAM17, reduce the apoptosis of myocardial cells and the expression of inflammatory factors in acute myocardial infarction, and reduce the occurrence of oxidative stress.
Collapse
|
6
|
Ren J, Fu L, Nile SH, Zhang J, Kai G. Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications. Front Pharmacol 2019; 10:753. [PMID: 31338034 PMCID: PMC6626924 DOI: 10.3389/fphar.2019.00753] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Bioactive chemical constitutes from the root of Salvia miltiorrhiza classified in two major groups, viz., liposoluble tanshinones and water-soluble phenolics. Tanshinone IIA is a major lipid-soluble compound having promising health benefits. The in vivo and in vitro studies showed that the tanshinone IIA and salvianolate have a wide range of cardiovascular and other pharmacological effects, including antioxidative, anti-inflammatory, endothelial protective, myocardial protective, anticoagulation, vasodilation, and anti-atherosclerosis, as well as significantly help to reduce proliferation and migration of vascular smooth muscle cells. In addition, some of the clinical studies reported that the S. miltiorrhiza preparations in combination with Western medicine were more effective for treatment of various cardiovascular diseases including angina pectoris, myocardial infarction, hypertension, hyperlipidemia, and pulmonary heart diseases. In this review, we demonstrated the potential applications of S. miltiorrhiza, including pharmacological effects of salvianolate, tanshinone IIA, and its water-soluble derivative, like sodium tanshinone IIA sulfonate. Moreover, we also provided details about the clinical applications of S. miltiorrhiza preparations in controlling the cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Fu
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guoyin Kai
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|