1
|
Wu C, Liu H, Zhan Z, Zhang X, Zhang M, You J, Ma J. Unveiling dysregulated lncRNAs and networks in non-syndromic cleft lip with or without cleft palate pathogenesis. Sci Rep 2024; 14:1047. [PMID: 38200098 PMCID: PMC10781966 DOI: 10.1038/s41598-024-51747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common congenital facial malformation with a complex, incompletely understood origin. Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, potentially shedding light on NSCL/P's etiology. This study aimed to identify critical lncRNAs and construct regulatory networks to unveil NSCL/P's underlying molecular mechanisms. Integrating gene expression profiles from the Gene Expression Omnibus (GEO) database, we pinpointed 30 dysregulated NSCL/P-associated lncRNAs. Subsequent analyses enabled the creation of competing endogenous RNA (ceRNA) networks, lncRNA-RNA binding protein (RBP) interaction networks, and lncRNA cis and trans regulation networks. RT-qPCR was used to examine the regulatory networks of lncRNA in vivo and in vitro. Furthermore, protein levels of lncRNA target genes were validated in human NSCL/P tissue samples and murine palatal shelves. Consequently, two lncRNAs and three mRNAs: FENDRR (log2FC = - 0.671, P = 0.040), TPT1-AS1 (log2FC = 0.854, P = 0.003), EIF3H (log2FC = - 1.081, P = 0.041), RBBP6 (log2FC = 0.914, P = 0.037), and SRSF1 (log2FC = 0.763, P = 0.026) emerged as potential contributors to NSCL/P pathogenesis. Functional enrichment analyses illuminated the biological functions and pathways associated with these lncRNA-related networks in NSCL/P. In summary, this study comprehensively delineates the dysregulated transcriptional landscape, identifies associated lncRNAs, and reveals pivotal sub-networks relevant to NSCL/P development, aiding our understanding of its molecular progression and setting the stage for further exploration of lncRNA and mRNA regulation in NSCL/P.
Collapse
Affiliation(s)
- Caihong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Stomatological Hospital affiliated Suzhou Vocational Health College, Suzhou, China
| | - Haojie Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhuorong Zhan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Mengnan Zhang
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jiawen You
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Shi C, Jiao P, Chen Z, Ma L, Yao S. Exploring the roles of noncoding RNAs in craniofacial abnormalities: A systematic review. Dev Biol 2024; 505:75-84. [PMID: 37923186 DOI: 10.1016/j.ydbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Congenital craniofacial abnormalities are congenital anomalies of variable expressivity and severity with a recognizable set of abnormalities, which are derived from five identifiable primordial structures. They can occur unilaterally or bilaterally and include various malformations such as cleft lip with/without palate, craniosynostosis, and craniofacial microsomia. To date, the molecular etiology of craniofacial abnormalities is largely unknown. Noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, circular RNAs and PIWI-interacting RNAs, function as major regulators of cellular epigenetic hallmarks via regulation of various molecular and cellular processes. Recently, aberrant expression of ncRNAs has been implicated in many diseases, including craniofacial abnormalities. Consequently, this review focuses on the role and mechanism of ncRNAs in regulating craniofacial development in the hope of providing clues to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Cheng Shi
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China; Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Pengfei Jiao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China
| | - Zhiyi Chen
- Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
| | - Siyue Yao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China.
| |
Collapse
|
3
|
Lu M, Lu F, Liao C, Guo Y, Mao C, Lai Y, Chen X, Chen W. High throughput miRNA sequencing and bioinformatics analysis identify the mesenchymal cell proliferation and apoptosis related miRNAs during fetal mice palate development. J Gene Med 2023; 25:e3531. [PMID: 37317697 DOI: 10.1002/jgm.3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Palatogenesis requires a precise spatiotemporal regulation of gene expression. Recent studies indicate that microRNAs (miRNAs) are key factors in normal palatogenesis. The present study aimed to explain the regulatory mechanisms of miRNAs during palate development. METHODS Pregnant ICR mice were choose at embryonic day 10.5 (E10.5). Hemotoxylin and eosin (H&E) staining was used to observe the morphological changes during the development of palatal process at embryonic day (E)13.5, E14.0, E14.5, E15.0 and E15.5. The fetal palatal tissues were collected at E13.5, E14.0, E14.5 and E15.0 to explore miRNA expression and function by high throughput sequencing and bioinformatic analysis. Mfuzz cluster analysis was used to look for miRNAs related to the fetal mice palate formation. The target genes of miRNAs were predicted by miRWalk. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed base on target genes. The mesenchymal cell proliferation and apoptosis related miRNAs-genes networks were predicted and constructed using miRWalk and Cytoscape software. The expression of mesenchymal cell proliferation and apoptosis related miRNAs at the E13.5, E14.0, E14.5, and E15.0 was detected by a quantitative real-time PCR (RT-qPCR) assay. RESULTS H&E staining found that the palatal process grows vertically along the sides of the tongue at E13.5, the position of the tongue begins to descend and the bilateral palatal processes rise above the tongue at E14.0, the palatal process grows horizontally at E14.5, there is palatal contact fusion at E15.0, and the palatal suture disappeared at E15.5. Nine clusters of miRNA expression changes were identified in the fetal mice palate formation progression, including two reducing trends, two rising trends and five disordered trends. Next, the heatmap showed the miRNA expression from Clusters 4, 6, 9, 12 in the E13.5, E14.0, E14.5 and E15.0 groups. GO functional and KEGG pathway enrichment analysis found target genes of miRNAs in clusters involved in regulation of mesenchymal phenotype and the mitogen-activated protein kinase (MAPK) signaling pathway. Next, mesenchymal phenotype related miRNA-genes networks were constructed. The heatmap showing that the mesenchymal phenotype related miRNA expression of Clusters 4, 6, 9 and 12 at E13.5, E14.0, E14.5 and E15.0. Furthermore, the mesenchymal cell proliferation and apoptosis related miRNA-gene networks were identified in Clusters 6 and 12, including mmu-miR-504-3p-Hnf1b, etc. The expression level of mesenchymal cell proliferation and apoptosis related miRNAs at the E13.5, E14.0, E14.5, and E15.0 was verified by a RT-qPCR assay. CONCLUSIONS For the first time, we identified that clear dynamic miRNA expression during palate development. Furthermore, we demonstrated that mesenchymal cell proliferation and apoptosis related miRNAs, genes and the MAPK signaling pathway are important during fetal mice palate development.
Collapse
Affiliation(s)
- Meng Lu
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Feng Lu
- Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Caiyu Liao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Guo
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xingyu Chen
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Iwaya C, Suzuki A, Iwata J. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate. Int J Mol Sci 2023; 24:3552. [PMID: 36834963 PMCID: PMC9958963 DOI: 10.3390/ijms24043552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of small non-coding RNAs that can simultaneously regulate expression of many downstream target genes, as a causative mechanism of cleft lip and palate in humans and mice.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
5
|
Mukhopadhyay P, Smolenkova I, Seelan RS, Pisano MM, Greene RM. Spatiotemporal Expression and Functional Analysis of miRNA-22 in the Developing Secondary Palate. Cleft Palate Craniofac J 2023; 60:27-38. [PMID: 34730446 DOI: 10.1177/10556656211054004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Normal development of the embryonic orofacial region requires precise spatiotemporal coordination between numerous genes. MicroRNAs represent small, single-stranded, non-coding molecules that regulate gene expression. This study examines the role of microRNA-22 (miR-22) in murine orofacial ontogeny. METHODS Spatiotemporal and differential expression of miR-22 (mmu-miR-22-3p) within the developing secondary palate was determined by in situ hybridization and quantitative real-time PCR, respectively. Bioinformatic approaches were used to predict potential mRNA targets of miR-22 and analyze their association with cellular functions indispensable for normal orofacial ontogeny. An in vitro palate organ culture system was used to assess the role of miR-22 in secondary palate development. RESULTS There was a progressive increase in miR-22 expression from GD12.5 to GD14.5 in palatal processes. On GD12.5 and GD13.5, miR-22 was expressed in the future oral, nasal, and medial edge epithelia. On GD14.5, miR-22 expression was observed in the residual midline epithelial seam (MES), the nasal epithelium and the mesenchyme, but not in the oral epithelium. Inhibition of miR-22 activity in palate organ cultures resulted in failure of MES removal. Bioinformatic analyses revealed potential mRNA targets of miR-22 that may play significant roles in regulating apoptosis, migration, and/or convergence/extrusion, developmental processes that modulate MES removal during palatogenesis. CONCLUSIONS Results from the current study suggest a key role for miR-22 in the removal of the MES during palatogenesis and that miR-22 may represent a potential contributor to the etiology of cleft palate.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Irina Smolenkova
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| |
Collapse
|
6
|
Wei Y, Tian Y, Yu X, Miao Z, Xu Y, Pan Y. Advances in research regarding the roles of non-coding RNAs in non-syndromic cleft lip with or without cleft palate: A systematic review. Arch Oral Biol 2021; 134:105319. [PMID: 34864430 DOI: 10.1016/j.archoralbio.2021.105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate by means of a literature review, what non-coding RNAs engage in non-syndromic cleft lip with or without cleft palate (NSCL/P) and how they lead to the occurrence of this malformation. DESIGN A literature search of online databases (Medline via PubMed, Web of Science, Scopus, and Embase) was performed using appropriate keywords (e.g. non-coding RNA, miRNA, lncRNA, NSCL/P, non-syndromic cleft lip only, and non-syndromic orofacial cleft). The risk of bias in the included studies was then assessed, and a comprehensive review of reported non-coding RNAs associated with NSCL/P was performed. RESULTS The initial search retrieved 133 studies reporting non-coding RNAs associated with NSCL/P; after excluding 18 replicates and 77 ineligible studies, 35 remained. Of these, 16 studies fulfilled all the criteria and were included in the systematic review. These studies established the roles of non-coding RNAs in the development of craniofacial structures. The differential expression of these non-coding RNAs could lead to orofacial clefts, indicating their significance in NSCL/P and their profound research value. CONCLUSION There is evidence that non-coding RNAs are involved in the formation of NSCL/P. Specifically, they play significant roles in the regulation of genes and signalling pathways related to NSCL/P.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yu Tian
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Xin Yu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Ziyue Miao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yan Xu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China.
| |
Collapse
|
7
|
Yoshioka H, Li A, Suzuki A, Ramakrishnan SS, Zhao Z, Iwata J. Identification of microRNAs and gene regulatory networks in cleft lip common in humans and mice. Hum Mol Genet 2021; 30:1881-1893. [PMID: 34104955 PMCID: PMC8444451 DOI: 10.1093/hmg/ddab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The etiology of cleft lip with/without cleft palate (CL/P), one of the most frequent craniofacial birth defects worldwide, is complicated by contributions of both genetic and environmental factors. Understanding the etiology of these conditions is essential for developing preventive strategies. This study thus aims to identify regulatory networks of microRNAs (miRNAs), transcriptional factors (TFs) and non-TF genes associated with cleft lip (CL) that are conserved in humans and mice. Notably, we found that miR-27b, miR-133b, miR-205, miR-376b and miR-376c were involved in the regulation of CL-associated gene expression in both humans and mice. Among the candidate miRNAs, the overexpression of miR-27b, miR-133b and miR-205, but not miR-376b and miR-376c, significantly inhibited cell proliferation through suppression of CL-associated genes (miR-27b suppressed PAX9 and RARA; miR-133b suppressed FGFR1, PAX7, and SUMO1; and miR-205 suppressed PAX9 and RARA) in cultured human and mouse lip mesenchymal cells. Taken together, our results suggest that elevated expression of miR-27b, miR-133b and miR-205 may play a crucial role in CL through the suppression of genes associated with CL.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Yoshioka H, Ramakrishnan SS, Suzuki A, Iwata J. Phenytoin Inhibits Cell Proliferation through microRNA-196a-5p in Mouse Lip Mesenchymal Cells. Int J Mol Sci 2021; 22:1746. [PMID: 33572377 PMCID: PMC7916186 DOI: 10.3390/ijms22041746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Cleft lip (CL) is one of the most common birth defects. It is caused by either genetic mutations or environmental factors. Recent studies suggest that environmental factors influence the expression of noncoding RNAs [e.g., microRNA (miRNA)], which can regulate the expression of genes crucial for cellular functions. In this study, we examined which miRNAs are associated with CL. Among 10 candidate miRNAs (miR-98-3p, miR-101a-3p, miR-101b-3p, miR-141-3p, miR-144-3p, miR-181a-5p, miR-196a-5p, miR-196b-5p, miR-200a-3p, and miR-710) identified through our bioinformatic analysis of CL-associated genes, overexpression of miR-181a-5p, miR-196a-5p, miR-196b-5p, and miR-710 inhibited cell proliferation through suppression of genes associated with CL in cultured mouse embryonic lip mesenchymal cells (MELM cells) and O9-1 cells, a mouse cranial neural crest cell line. In addition, we found that phenytoin, an inducer of CL, decreased cell proliferation through miR-196a-5p induction. Notably, treatment with a specific inhibitor for miR-196a-5p restored cell proliferation through normalization of expression of CL-associated genes in the cells treated with phenytoin. Taken together, our results suggest that phenytoin induces CL through miR-196a-5p induction, which suppresses the expression of CL-associated genes.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
9
|
Yoshioka H, Ramakrishnan SS, Shim J, Suzuki A, Iwata J. Excessive All-Trans Retinoic Acid Inhibits Cell Proliferation Through Upregulated MicroRNA-4680-3p in Cultured Human Palate Cells. Front Cell Dev Biol 2021; 9:618876. [PMID: 33585479 PMCID: PMC7876327 DOI: 10.3389/fcell.2021.618876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cleft palate is the second most common congenital birth defect, and both environmental and genetic factors are involved in the etiology of the disease. However, it remains largely unknown how environmental factors affect palate development. Our previous studies show that several microRNAs (miRs) suppress the expression of genes involved in cleft palate. Here we show that miR-4680-3p plays a crucial role in cleft palate pathogenesis. We found that all-trans retinoic acid (atRA) specifically induces miR-4680-3p in cultured human embryonic palatal mesenchymal (HEPM) cells. Overexpression of miR-4680-3p inhibited cell proliferation in a dose-dependent manner through the suppression of expression of ERBB2 and JADE1, which are known cleft palate-related genes. Importantly, a miR-4680-3p-specific inhibitor normalized cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with atRA. Taken together, our results suggest that upregulation of miR-4680-3p induced by atRA may cause cleft palate through suppression of ERBB2 and JADE1. Thus, miRs may be potential targets for the prevention and diagnosis of cleft palate.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junbo Shim
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
10
|
Iwata J. Gene-Environment Interplay and MicroRNAs in Cleft Lip and Cleft Palate. ORAL SCIENCE INTERNATIONAL 2021; 18:3-13. [PMID: 36855534 PMCID: PMC9969970 DOI: 10.1002/osi2.1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cleft lip (CL) with/without cleft palate (CP) (hereafter CL/P) is the second most common congenital birth defect, affecting 7.94 to 9.92 children per 10,000 live births worldwide, followed by Down syndrome. An increasing number of genes have been identified as affecting susceptibility and/or as causative genes for CL/P in mouse genetic and chemically-induced CL and CP studies, as well as in human genome-wide association studies and linkage analysis. While marked progress has been made in the identification of genetic and environmental risk factors for CL/P, the interplays between these factors are not yet fully understood. This review aims to summarize our current knowledge of CL and CP from genetically engineered mouse models and environmental factors that have been studied in mice. Understanding the regulatory mechanism(s) of craniofacial development may not only advance our understanding of craniofacial developmental biology, but could also provide approaches for the prevention of birth defects and for tissue engineering in craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Pediatric Research Center, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, 77030 USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, 77030 USA
| |
Collapse
|
11
|
Yoshioka H, Mikami Y, Ramakrishnan SS, Suzuki A, Iwata J. MicroRNA-124-3p Plays a Crucial Role in Cleft Palate Induced by Retinoic Acid. Front Cell Dev Biol 2021; 9:621045. [PMID: 34178974 PMCID: PMC8219963 DOI: 10.3389/fcell.2021.621045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Cleft lip with/without cleft palate (CL/P) is one of the most common congenital birth defects, showing the complexity of both genetic and environmental contributions [e.g., maternal exposure to alcohol, cigarette, and retinoic acid (RA)] in humans. Recent studies suggest that epigenetic factors, including microRNAs (miRs), are altered by various environmental factors. In this study, to investigate whether and how miRs are involved in cleft palate (CP) induced by excessive intake of all-trans RA (atRA), we evaluated top 10 candidate miRs, which were selected through our bioinformatic analyses, in mouse embryonic palatal mesenchymal (MEPM) cells as well as in mouse embryos treated with atRA. Among them, overexpression of miR-27a-3p, miR-27b-3p, and miR-124-3p resulted in the significant reduction of cell proliferation in MEPM cells through the downregulation of CP-associated genes. Notably, we found that excessive atRA upregulated the expression of miR-124-3p, but not of miR-27a-3p and miR-27b-3p, in both in vivo and in vitro. Importantly, treatment with a specific inhibitor for miR-124-3p restored decreased cell proliferation through the normalization of target gene expression in atRA-treated MEPM cells and atRA-exposed mouse embryos, resulting in the rescue of CP in mice. Taken together, our results indicate that atRA causes CP through the induction of miR-124-3p in mice.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yurie Mikami
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
12
|
Garland MA, Sun B, Zhang S, Reynolds K, Ji Y, Zhou CJ. Role of epigenetics and miRNAs in orofacial clefts. Birth Defects Res 2020; 112:1635-1659. [PMID: 32926553 DOI: 10.1002/bdr2.1802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Orofacial clefts (OFCs) have multiple etiologies and likely result from an interplay between genetic and environmental factors. Within the last decade, studies have implicated specific epigenetic modifications and noncoding RNAs as additional facets of OFC etiology. Altered gene expression through DNA methylation and histone modification offer novel insights into how specific genes contribute to distinct OFC subtypes. Epigenetics research has also provided further evidence that cleft lip only (CLO) is a cleft subtype with distinct etiology. Polymorphisms or misexpression of genes encoding microRNAs, as well as their targets, contribute to OFC risk. The ability to experimentally manipulate epigenetic changes and noncoding RNAs in animal models, such as zebrafish, Xenopus, mice, and rats, has offered novel insights into the mechanisms of various OFC subtypes. Although much remains to be understood, recent advancements in our understanding of OFC etiology may advise future strategies of research and preventive care.
Collapse
Affiliation(s)
- Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
13
|
Li A, Jia P, Mallik S, Fei R, Yoshioka H, Suzuki A, Iwata J, Zhao Z. Critical microRNAs and regulatory motifs in cleft palate identified by a conserved miRNA-TF-gene network approach in humans and mice. Brief Bioinform 2020; 21:1465-1478. [PMID: 31589286 PMCID: PMC7412957 DOI: 10.1093/bib/bbz082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cleft palate (CP) is the second most common congenital birth defect. The etiology of CP is complicated, with involvement of various genetic and environmental factors. To investigate the gene regulatory mechanisms, we designed a powerful regulatory analytical approach to identify the conserved regulatory networks in humans and mice, from which we identified critical microRNAs (miRNAs), target genes and regulatory motifs (miRNA-TF-gene) related to CP. Using our manually curated genes and miRNAs with evidence in CP in humans and mice, we constructed miRNA and transcription factor (TF) co-regulation networks for both humans and mice. A consensus regulatory loop (miR17/miR20a-FOXE1-PDGFRA) and eight miRNAs (miR-140, miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-451a and miR-92a) were discovered in both humans and mice. The role of miR-140, which had the strongest association with CP, was investigated in both human and mouse palate cells. The overexpression of miR-140-5p, but not miR-140-3p, significantly inhibited cell proliferation. We further examined whether miR-140 overexpression could suppress the expression of its predicted target genes (BMP2, FGF9, PAX9 and PDGFRA). Our results indicated that miR-140-5p overexpression suppressed the expression of BMP2 and FGF9 in cultured human palate cells and Fgf9 and Pdgfra in cultured mouse palate cells. In summary, our conserved miRNA-TF-gene regulatory network approach is effective in detecting consensus miRNAs, motifs, and regulatory mechanisms in human and mouse CP.
Collapse
Affiliation(s)
- Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rong Fei
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
14
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
15
|
Suzuki A, Yoshioka H, Summakia D, Desai NG, Jun G, Jia P, Loose DS, Ogata K, Gajera MV, Zhao Z, Iwata J. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genomics 2019; 20:852. [PMID: 31727022 PMCID: PMC6854646 DOI: 10.1186/s12864-019-6238-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cleft lip (CL), one of the most common congenital birth defects, shows considerable geographic and ethnic variation, with contribution of both genetic and environmental factors. Mouse genetic studies have identified several CL-associated genes. However, it remains elusive how these CL-associated genes are regulated and involved in CL. Environmental factors may regulate these genes at the post-transcriptional level through the regulation of non-coding microRNAs (miRNAs). In this study, we sought to identify miRNAs associated with CL in mice. Results Through a systematic literature review and a Mouse Genome Informatics (MGI) database search, we identified 55 genes that were associated with CL in mice. Subsequent bioinformatic analysis of these genes predicted that a total of 33 miRNAs target multiple CL-associated genes, with 20 CL-associated genes being potentially regulated by multiple miRNAs. To experimentally validate miRNA function in cell proliferation, we conducted cell proliferation/viability assays for the selected five candidate miRNAs (miR-124-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7d-5p). Overexpression of miR-124-3p, but not of the others, inhibited cell proliferation through suppression of CL-associated genes in cultured mouse embryonic lip mesenchymal cells (MELM cells) isolated from the developing mouse lip region. By contrast, miR-124-3p knockdown had no effect on MELM cell proliferation. This miRNA-gene regulatory mechanism was mostly conserved in O9–1 cells, an established cranial neural crest cell line. Expression of miR-124-3p was low in the maxillary processes at E10.5, when lip mesenchymal cells proliferate, whereas it was greatly increased at later developmental stages, suggesting that miR-124-3p expression is suppressed during the proliferation phase in normal palate development. Conclusions Our findings indicate that upregulated miR-124-3p inhibits cell proliferation in cultured lip cells through suppression of CL-associated genes. These results will have a significant impact, not only on our knowledge about lip morphogenesis, but also on the development of clinical approaches for the diagnosis and prevention of CL.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dima Summakia
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA
| | - Neha G Desai
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David S Loose
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona V Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
16
|
Gajera M, Desai N, Suzuki A, Li A, Zhang M, Jun G, Jia P, Zhao Z, Iwata J. MicroRNA-655-3p and microRNA-497-5p inhibit cell proliferation in cultured human lip cells through the regulation of genes related to human cleft lip. BMC Med Genomics 2019; 12:70. [PMID: 31122291 PMCID: PMC6533741 DOI: 10.1186/s12920-019-0535-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex and involves the contribution of genetic and environmental factors. Although many candidate genes have been identified, the regulation and interaction of these genes in CL/P remain unclear. In addition, the contribution of microRNAs (miRNAs), non-coding RNAs that regulate the expression of multiple genes, to the etiology of CL/P is largely unknown. Methods To identify the signatures of causative biological pathways for human CL/P, we conducted a systematic literature review for human CL/P candidate genes and subsequent bioinformatics analyses. Functional enrichment analyses of the candidate CL/P genes were conducted using the pathway databases GO and KEGG. The miRNA-mediated post-transcriptional regulation of the CL/P candidate genes was analyzed with miRanda, PITA, and TargetScan, and miRTarbase. Genotype-phenotype association analysis was conducted using GWAS. The functional significance of the candidate miRNAs was evaluated experimentally in cell proliferation and target gene regulation assays in human lip fibroblasts. Results Through an extensive search of the main biomedical databases, we mined 177 genes with mutations or association/linkage reported in individuals with CL/P, and considered them as candidate genes for human CL/P. The genotype-phenotype association study revealed that mutations in 12 genes (ABCA4, ADAM3A, FOXE1, IRF6, MSX2, MTHFR, NTN1, PAX7, TP63, TPM1, VAX1, and WNT9B) were significantly associated with CL/P. In addition, our bioinformatics analysis predicted 16 microRNAs (miRNAs) to be post-transcriptional regulators of CL/P genes. To validate the bioinformatics results, the top six candidate miRNAs (miR-124-3p, miR-369-3p, miR-374a-5p, miR-374b-5p, miR-497-5p, and miR-655-3p) were evaluated by cell proliferation/survival assays and miRNA-gene regulation assays in cultured human lip fibroblasts. We found that miR-497-5p and miR-655-3p significantly suppressed cell proliferation in these cells. Furthermore, the expression of the predicted miRNA-target genes was significantly downregulated by either miR-497-5p or miR-655-3p mimic. Conclusion Expression of miR-497-5p and miR-655-3p suppresses cell proliferation through the regulation of human CL/P-candidate genes. This study provides insights into the role of miRNAs in the etiology of CL/P and suggests possible strategies for the diagnosis of CL/P. Electronic supplementary material The online version of this article (10.1186/s12920-019-0535-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Neha Desai
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Musi Zhang
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
17
|
Shu X, Cheng L, Dong Z, Shu S. Identification of circular RNA-associated competing endogenous RNA network in the development of cleft palate. J Cell Biochem 2019; 120:16062-16074. [PMID: 31074068 DOI: 10.1002/jcb.28888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) serve as competing endogenous RNAs (ceRNAs) and indirectly regulate gene expression through shared microRNAs (miRNAs). However, the regulatory mechanisms of circRNA as ceRNA associated with the fusion of palatal shelves in palatogenesis are yet unclear. This study aimed to explore the potential mechanism underlying the role of circRNA as ceRNA in cleft palate (CP). First, we systematically analyzed RNA-seq and miRNA-seq data after high-throughput sequencing for embryonic palatal shelf tissues from a mouse CP model induced by maternal exposure to all-trans retinoic acid on embryonic gestation day 14.5 (E14.5). Thirty-nine circRNAs, 18 miRNAs, and 936 messenger RNAs (mRNAs) were significantly dysregulated (log2 [fold change {FC}] > 1; P < 0.05). Thereafter, we constructed a circRNA-associated ceRNA network. Finally, we determined the circRNA_0954-miRNA-881-3p-PRKAR1α ceRNA network as a hub involved in palatogenesis. Gene Ontology analysis revealed that ceRNA-related genes were associated with facial morphogenesis and developmental gene silencing. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that ceRNA-related genes are involved in apoptosis (P < 0.05, fold enrichment >1). Quantitative reverse transcription polymerase chain reaction was performed to verify the results of ceRNA analysis. We found that the circRNA-miRNA-mRNA ceRNA network is involved in palatogenesis. The present results imply that circRNA_0954-miRNA-881-3p-PRKAR1α ceRNA network may cause dysfunctional palatal fusion and might facilitate the development of novel epigenetic biomarkers to treat CP in the future.
Collapse
Affiliation(s)
- Xuan Shu
- The Cleft Lip and Palate Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liuhanghang Cheng
- The Cleft Lip and Palate Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zejun Dong
- The Cleft Lip and Palate Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shenyou Shu
- The Cleft Lip and Palate Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
18
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Li A, Qin G, Suzuki A, Gajera M, Iwata J, Jia P, Zhao Z. Network-based identification of critical regulators as putative drivers of human cleft lip. BMC Med Genomics 2019; 12:16. [PMID: 30704473 PMCID: PMC6357351 DOI: 10.1186/s12920-018-0458-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cleft lip (CL) is one of the most common congenital birth defects with complex etiology. While genome-wide association studies (GWAS) have made significant advances in our understanding of mutations and their related genes with potential involvement in the etiology of CL, it remains unknown how these genes are functionally regulated and interact with each other in lip development. Currently, identifying the disease-causing genes in human CL is urgently needed. So far, the causative CL genes have been largely undiscovered, making it challenging to design experiments to validate the functional influence of the mutations identified from large genomic studies such as CL GWAS. RESULTS Transcription factors (TFs) and microRNAs (miRNAs) are two important regulators in cellular system. In this study, we aimed to investigate the genetic interactions among TFs, miRNAs and the CL genes curated from the previous studies. We constructed miRNA-TF co-regulatory networks, from which the critical regulators as putative drivers in CL were examined. Based on the constructed networks, we identified ten critical hub genes with prior evidence in CL. Furthermore, the analysis of partitioned regulatory modules highlighted a number of biological processes involved in the pathology of CL, including a novel pathway "Signaling pathway regulating pluripotency of stem cells". Our subnetwork analysis pinpointed two candidate miRNAs, hsa-mir-27b and hsa-mir-497, activating the Wnt pathway that was associated with CL. Our results were supported by an independent gene expression dataset in CL. CONCLUSIONS This study represents the first regulatory network analysis of CL genes. Our work presents a global view of the CL regulatory network and a novel approach on investigating critical miRNAs, TFs and genes via combinatory regulatory networks in craniofacial development. The top genes and miRNAs will be important candidates for future experimental validation of their functions in CL.
Collapse
Affiliation(s)
- Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA
| | - Guimin Qin
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA.,School of Software, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Mona Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Suzuki A, Abdallah N, Gajera M, Jun G, Jia P, Zhao Z, Iwata J. Genes and microRNAs associated with mouse cleft palate: A systematic review and bioinformatics analysis. Mech Dev 2018; 150:21-27. [PMID: 29475039 DOI: 10.1016/j.mod.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/13/2018] [Accepted: 02/17/2018] [Indexed: 01/22/2023]
Abstract
Cleft palate (CP) is the most prevalent craniofacial deformity, with ethnic and geographic variation in prevalence in humans. Mice have been used as an animal model to study the cause(s) of CP by several approaches, including genetic and chemical-induced approaches. Mouse genetic approaches revealed that significant amounts of genes are involved in the CP pathology. The aim of this study was to identify common features of CP-associated genes and to explore the roles of microRNAs (miRNAs) as important post-transcriptional regulators that may be involved in the regulation of CP genes. To generate an accurate list of genes associated with CP, we first conducted systematic literature searches through main databases such as Medline, Embase, and PubMed, as well as other sources such as Scopus and Mouse Genome Informatics. We found that 195 mouse strains with single-gene mutations and 140 mouse strains with compound-gene mutations were reported to have CP. The CP genes were categorized by functions and pathways using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations, highlighting the contribution of cellular metabolism to CP. A total of 18 miRNAs were involved in the regulation of multiple CP genes. Human genotype-phenotype analysis revealed that variants in five human homologous CP genes (IRF6, FOXE1, VAX1, WNT9B, and GAD1) significantly contributed to the human CP phenotype. Thus, our results suggest that cellular metabolism and miRNAs play an important role in the regulation of genetic pathways and networks crucial for palatal formation.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|