1
|
Wang Z, Guo Z, Luo Y, Ma L, Hu X, Chen F, Li D. A review of the traditional uses, pharmacology, and toxicology of areca nut. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156005. [PMID: 39241389 DOI: 10.1016/j.phymed.2024.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Areca nut, the fruit of A. catechu, is an important Chinese herbal medicine and is the first of China's "four southern medicines". The main chemical components are alkaloids, phenols, polysaccharides, amino acids, and terpenoids. The flowers, leaves, fruits and seeds of A. catechu contain high medicinal value. However, with the emergence of adverse reactions in people who chew areca nut, people have doubts about the safety of the use of areca nut. PURPOSE In view of the two sides of pharmacology and toxicology of areca nut, this study comprehensively reviewed the components of different parts of A. catechu, the mechanism of pharmacology and toxicology, and the relationship between dosage and pharmacology and toxicology, in order to provide a new reference for the safe application of areca nut. METHODS We used "Areca nut", "Betel nut", and known biologically active ingredients in areca nut, combined with "natural active ingredients", "pharmacological activity", and "toxicological effect" as keywords to search in PubMed, Web of Science, Science Direct and CNKI up to March 2024. RESULTS A large number of studies have shown that low-dose areca nut has pharmacological effects such as deworming, anti-inflammatory, improving gastrointestinal function, lowering blood lipids, preventing atherosclerosis, anti-depression properties. The important mechanism involved in these effects is to reduce the generation of ROS, inhibit the activation of NADPH oxidase, increase the activity of antioxidant enzymes, affect MAPK, AKT, TLR, NF-κB, Nrf-2, PI3 K, STAT3 signaling pathway, reduce COX-2, IL-1β m RNA, MCP-1 and ICAM-1 mRNA gene expression, reduce IL-6, IL-8, IGE levels, activate AMPK signaling pathway, change the ion level in cells, and increase Bax/Bcl-2 ratio. It interferes with the biochemical metabolic process of bacteria. Long-term consumption of areca nut in large quantities will cause some adverse reactions or related malignant diseases to the human body. CONCLUSION We reviewed the pharmacological and toxicological effects and related mechanisms of areca nut, revealed the relationship between dose and pharmacological and toxicological effects, and discussed how to reduce the toxicity of areca nut and improve the comprehensive utilization of areca nut. It provides a reference for the study of the relationship between areca nut and human health, as well as the safe and rational use and full development and utilization of areca nut.
Collapse
Affiliation(s)
- Zihan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Ziyuan Guo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Sun Y, Feng J, Hou W, Qi H, Liu Y. Comprehensive insights into areca nut: active components and omics technologies for bioactivity evaluation and quality control. Front Pharmacol 2024; 15:1407212. [PMID: 38873426 PMCID: PMC11169615 DOI: 10.3389/fphar.2024.1407212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Areca nut (AN), the fruit or seed of Areca catechu Linn, has many uses, including chewing and medicinal purposes. It has sparked worries about health due to the presence of alkaloids. Chewing AN may have a variety of negative consequences; however, the medicinal use of AN has no notable adverse effects. To completely understand and effectively use AN, researchers have investigated its chemical makeup or biological activity, analyzed the variations between different AN species and different periods, and improved extraction and processing procedures. Today, an increasing number of researchers are exploring the underlying reasons for AN variations, as well as the molecular mechanisms of biosynthesis of chemical components, to comprehend and change AN at the genetic level. This review presents an overview of the clinical study, pharmacology, and detection of the main bioactive components in AN, and the main factors influencing their content, delving into the omics applications in AN research. On the basis of the discussions and summaries, this review identifies current research gaps and proposes future directions for investigation.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wencheng Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Huasha Qi
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yangyang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
3
|
Sun K, Qin L. Antiosteoporosis effect of bryodulcosigenin on ovariectomy-induced osteoporosis in experimental rats. Acta Cir Bras 2024; 39:e391024. [PMID: 38656061 PMCID: PMC11037890 DOI: 10.1590/acb391024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Osteoporosis is a bone disease which commonly occurred in postmenopausal women. Almost 10 percent of world population and approximately 30% of women (postmenopausal) suffer from this disease. Alternative medicine has great success in the treatment of osteoporosis disease. Bryodulcosigenin, a potent phytoconstituent, already displayed the anti-inflammatory and antioxidant effect. In this study, we made effort to analyze the antiosteoporosis effect of bryodulcosigenin against ovariectomy (OVX) induced osteoporosis in rats. METHODS Swiss albino Wistar rats were grouped into fIve groups and given an oral dose of bryodulcosigenin (10, 20 and 30 mg/kg) for eight weeks. Body weight, uterus, bone mineral density, cytokines, hormones parameters, transforming growth factor (TGF)-β, insulin-like growth factor (IGF), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), and its ratio were estimated. RESULTS Bryodulcosigenin significantly (p < 0.001) suppressed the body weight and enhanced the uterine weight and significantly (p < 0.001) increased the bone mineral density in whole femur, caput femoris, distal femur and proximal femur. Bryodulcosigenin significantly (P < 0.001) altered the level of biochemical parameters at dose dependent manner, significantly (P < 0.001) improved the level of estrogen and suppressed the level of follicle stimulating hormone and luteinizing hormone. Bryodulcosigenin significantly (P < 0.001) improved the level of OPG and suppressed the level of RANKL. CONCLUSIONS Bryodulcosigenin reduced the cytokines level and suppressed the TGF-β and IGF. We concluded that bryodulcosigenin is an antiosteoporosis medication based on the findings.
Collapse
Affiliation(s)
- Kai Sun
- Yunnan University – The Affiliated Hospital – Department of Spinal Surgery – Kunming, China
| | - Lin Qin
- Kunming Medical University – School of Pharmaceutical Science and Yunnan Key – Laboratory of Pharmacology for Natural Products – Kunming, Yunnan, China
- Kunming Medical University – The First Affiliated Hospital – Department of Endocrinology – Kunming, China
| |
Collapse
|
4
|
Tong T, Xu A, Tan S, Jiang H, Liu L, Deng S, Wang H. Biological Effects and Biomedical Applications of Areca Nut and Its Extract. Pharmaceuticals (Basel) 2024; 17:228. [PMID: 38399443 PMCID: PMC10893415 DOI: 10.3390/ph17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The dried, mature fruit of the palm tree species Areca catechu L. is known as the areca nut (AN) or betel nut. It is widely cultivated in the tropical regions. In many nations, AN is utilized for traditional herbal treatments or social activities. AN has historically been used to address various health issues, such as diarrhea, arthritis, dyspepsia, malaria, and so on. In this review, we have conducted a comprehensive summary of the biological effects and biomedical applications of AN and its extracts. Initially, we provided an overview of the constituents in AN extract. Subsequently, we summarized the biological effects of AN and its extracts on the digestive system, nervous system, and circulatory system. And we elucidated the contributions of AN and its extracts in antidepressant, anti-inflammatory, antioxidant, and antibacterial applications. Finally, we have discussed the challenges and future perspectives regarding the utilization of AN and its extracts as emerging pharmaceuticals or valuable adjuncts within the pharmaceutical field.
Collapse
Affiliation(s)
- Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Aiqing Xu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuhua Tan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hengzhi Jiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lixin Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Senwen Deng
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
5
|
Palaskar J, Khadilkar V, Khadilkar A, Ambildhok K, Mumbare S. Effect of personal habits on bone mineral density among adults using orthopantomogram indices as a screening tool for osteoporosis. JOURNAL OF THE INTERNATIONAL CLINICAL DENTAL RESEARCH ORGANIZATION 2022. [DOI: 10.4103/jicdro.jicdro_101_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Lu YH, Geng JH, Wu DW, Chen SC, Hung CH, Kuo CH. Betel Nut Chewing Decreased Calcaneus Ultrasound T-Score in a Large Taiwanese Population Follow-Up Study. Nutrients 2021; 13:3655. [PMID: 34684655 PMCID: PMC8541161 DOI: 10.3390/nu13103655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Chewing betel nut is common in Taiwan. Although previous studies have shown that chewing betel nuts is associated with adverse health effects, findings about the impact on bone density have been inconsistent. Therefore, the aim of this study was to investigate the correlation between betel nut chewing and calcaneus ultrasound T-score in a longitudinal study of 118,856 participants from the Taiwan Biobank. Of these participants, 27,002 were followed up with for a median of 4 years. The T-score of the calcaneus was measured in the non-dominant foot using ultrasound. Multivariable analysis showed that a history of chewing betel nut (coefficient β = -0.232; p < 0.001) was significantly associated with low baseline T-score in all participants (n = 118,856). In addition, a long duration of betel nut chewing (per 1 year; coefficient β = -0.003; p = 0.022) was significantly associated with a low baseline T-score in the participants with a history of chewing betel nut (n = 7210). Further, a long duration of betel nut chewing (per 1 year; coefficient β = -0.004; p = 0.039) was significantly associated with a low ΔT-score in the participants with a history of chewing betel nut (n = 1778) after 4 years of follow-up. In conclusion, our results showed that betel nut chewing was associated with a decrease in calcaneus ultrasound T-score, and thus, it is important to stop chewing betel nut to help prevent an increased risk of osteoporosis in the Taiwanese population.
Collapse
Affiliation(s)
- Ying-Hsuan Lu
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Abstract
➤ Oxidative stress has been implicated as a causative factor in many disease states, possibly including the diminished bone mineral density in osteoporosis. ➤ Understanding the effects of oxidative stress on the development of osteoporosis may lead to further research improving preventative and therapeutic measures that can combat this important contributor to morbidity and mortality worldwide. ➤ A diet rich in whole plant foods with high antioxidant content along with antioxidant-preserving lifestyle changes may improve bone mineral density and reduce the risk of fragility-related fractures. While it is not explicitly clear if antioxidant activity is the effector of this change, the current evidence supports this possibility. ➤ Supplementation with isolated antioxidants may also provide some osteoprotective benefits, but whole plant food-derived antioxidants potentially have more overall benefits. Larger-scale clinical trials are needed to give credence to definitive clinical recommendations.
Collapse
Affiliation(s)
- Jeff S Kimball
- Loma Linda University Medical Center, Loma Linda, California
| | | | | |
Collapse
|
8
|
Liu FL, Chen CL, Lai CC, Lee CC, Chang DM. Arecoline suppresses RANKL-induced osteoclast differentiation in vitro and attenuates LPS-induced bone loss in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153195. [PMID: 32200293 DOI: 10.1016/j.phymed.2020.153195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/13/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Areca nut has anti-inflammatory, antiparasitic, antihypertensive, and antidepressant properties. The pathological hallmarks of inflammatory joint diseases are an increased number of osteoclasts and impaired differentiation of osteoblasts, which may disrupt the bone remodeling balance and eventually lead to bone loss. PURPOSE The present study assessed the effects of arecoline, the main alkaloid found in areca nut, on osteoclast and osteoblast differentiation and function. METHOD M-CSF/RANKL-stimulated murine bone marrow-derived macrophages (BMMs) were incubated with several concentrations of arecoline, and TRAP staining and pit formation were assessed to monitor osteoclast formation. Quantitative real-time RT-PCR and western blot analyses were used to analyze the expression of osteoclast-associated genes and signaling pathways. The effects of arecoline on bone were investigated in an in vivo mouse model of lipopolysaccharide (LPS)-induced trabecular bone loss after oral administration of arecoline. Alizarin red S staining and assays to measure ALP activity and the transcription level of osteoblast-related genes were used to evaluate the effects of arecoline on osteoblast differentiation and bone mineralization. RESULTS In a dose-dependent manner, arecoline at concentrations of 50-100 μM reduced both the development of TRAP-positive multinucleated osteoclasts and the formation of resorption pits in M-CSF/RANKL-stimulated BMMs. In M-CSF/RANKL-stimulated BMMs, arecoline also suppressed the expression and translocation of c-Fos and NFATcl, and osteoclast differentiated-related genes via interference with the AKT, MAPK, and NF-kB activation pathways. Femur bone loss and microcomputed tomography parameters were recovered by oral administration of arecoline in the mouse LPS-induced bone loss model. Lastly, arecoline increased ALP activity, bone mineralization, and the expression of osteoblast differentiation-related genes, such as ALP and Runx2, in MC3T3-E1 cells. CONCLUSION Our data suggest that arecoline may attenuate or prevent bone loss by suppressing osteoclastogenesis and promoting osteoblastogenesis. These findings provide evidence supporting arecoline's use as a potential therapeutic agent in bone-loss disorders and diseases.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan; Biobank Management Center of the Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Liang Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chih Lai
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Deh-Ming Chang
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan; Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
9
|
Salehi B, Konovalov DA, Fru P, Kapewangolo P, Peron G, Ksenija MS, Cardoso SM, Pereira OR, Nigam M, Nicola S, Pignata G, Rapposelli S, Sestito S, Anil Kumar NV, de la Luz Cádiz-Gurrea M, Segura-Carretero A, P Mishra A, Sharifi-Rad M, Cho WC, Taheri Y, Setzer WN, Sharifi-Rad J. Areca catechu-From farm to food and biomedical applications. Phytother Res 2020; 34:2140-2158. [PMID: 32159263 DOI: 10.1002/ptr.6665] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/29/2023]
Abstract
The family Arecaceae includes 181 genera and 2,600 species with a high diversity in physical characteristics. Areca plants, commonly palms, which are able to grow in nearly every type of habitat, prefer tropical and subtropical climates. The most studied species Areca catechu L. contains phytochemicals as phenolics and alkaloids with biological properties. The phenolics are mainly distributed in roots followed by fresh unripe fruits, leaves, spikes, and veins, while the contents of alkaloids are in the order of roots, fresh unripe fruits, spikes, leaves, and veins. This species has been reputed to provide health effects on the cardiovascular, respiratory, nervous, metabolic, gastrointestinal, and reproductive systems. However, in many developing countries, quid from this species has been associated with side effects, which include the destruction of the teeth, impairment of oral hygiene, bronchial asthma, or oral cancer. Despite these side effects, which are also mentioned in this work, the present review collects the main results of biological properties of the phytochemicals in A. catechu. This study emphasizes the in vitro and in vivo antioxidant, antimicrobial, anticancer, and clinical effectiveness in humans. In this sense, A. catechu have demonstrated effectiveness in several reports through in vitro and in vivo experiments on disorders such as antimicrobial, antioxidant, or anticancer. Moreover, our findings demonstrate that this species presents clinical effectiveness on neurological disorders. Hence, A. catechu extracts could be used as a bioactive ingredient for functional food, nutraceuticals, or cosmeceuticals. However, further studies, especially extensive and comprehensive clinical trials, are recommended for the use of Areca in the treatment of diseases.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Dmitry A Konovalov
- Department of Pharmacognozy and Botany, Pyatigorsk Medical and Pharmaceutical Institute, A branch of Volgograd State Medical University Ministry of Health of the Russian Federation, Pyatigorsk, Russia
| | - Pascaline Fru
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Petrina Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, Namibia
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mileski S Ksenija
- Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Olivia R Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, India
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | | - Nanjangud V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Granada, Spain
| | - Abhay P Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, India
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, USA.,Aromatic Plant Research Center, Lehi, Utah, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
10
|
Bei J, Zhang X, Wu J, Hu Z, Xu B, Lin S, Cui L, Wu T, Zou L. Ginsenoside Rb1 does not halt osteoporotic bone loss in ovariectomized rats. PLoS One 2018; 13:e0202885. [PMID: 30212470 PMCID: PMC6136715 DOI: 10.1371/journal.pone.0202885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 08/12/2018] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder, manifesting with a reduction in bone mass and deterioration of the microarchitecture. Mesenchymal stem cells (MSCs) have an innate ability to differentiate into several cell types, including osteoblasts (OB). Ginsenoside Rb1 (GRb1) is an ethanol extract from ginseng and contains a highly concentrated form of ginsenoside. GRb1 shows extensive beneficial health effects such as anti-oxidative and anti-inflammatory functions, modulating the immune system and inhibiting osteoclastogenesis. We hypothesized that GRb1 can promote MSC differentiation into OBs and inhibit bone loss. In the present study, we aimed to address two questions: (1) Will GRb1 have a positive effect on osteogenic differentiation of MSCs? and (2) Will GRb1 halt bone loss in ovariectomized (OVX) rats? We investigated the effects of GRb1 on viability and osteogenic differentiation of rat mesenchymal stem cells (rMSCs). Our results showed that GRb1 at concentrations of 10−8 M and 10−6 M can increase alkaline phosphatase activity, mineralization and the expression of osteogenic related proteins, such as osteopontin and osteoprotegerin, while incubating rMSCs with osteogenic induction medium and GRb1. Adding GRb1 into the medium can prevent rMSCs from Oxidative damage at the concentration of 25μM H2O2. Furthermore, 40 4-month-old rats were assigned to 5 groups(8 rats per group): the basal group, the sham group, the OVX group, the high dose of GRb1 group (6 mg/kg/day) and the low dose of GRb1 group (3 mg/kg/day). Rats recrived treatment 3days after surgery and last for 14 weeks. Examinations included serum analysis, mechanical testing, Masson-Goldner trichrome staining and bone histomorphometry analysis. The results showed that OVX can lead to dyslipidemia and excessive oxidative stress, whereas GRb1 cannot significantly halt dyslipidemia and excessive oxidative stress in OVX rats. In addition, the bone density of the lumbar vertebra and femur were decreased significantly in the OVX rats, and GRb1 could not inhibit bone loss. Bone histomorphometry analysis showed that the number and width of bone trabecula of the tibia were reduced in OVX rats, and GRb1 could not prevent their occurrence. A bone biomechanics assay showed that GRb1 cannot improve the ability of bone structure to resist fracture of the femur in OVX rats. The current study demonstrated that GRb1 has an obvious effect on osteogenic differentiation in rMSCs but no obvious effect on bone loss in OVX rats. These findings indicate GRb1 has a positive effect on rMSCs but does not have an effect on bone loss in OVX rats at the concentration we used.
Collapse
Affiliation(s)
- JiaXin Bei
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - XinLe Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - JingKai Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - ZhuoQing Hu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - BiLian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Sien Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Tie Wu
- Research Center of CoQ10, Guangdong Runhe Biochemical Technology Company, Dongguan, China
| | - LiYi Zou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
- * E-mail:
| |
Collapse
|