1
|
Salama A, El-Fadaly AA, Elgohary R. Effect of atorvastatin on lipopolysaccharide-induced lung inflammation and hypoxia in mice; modulation of HIF-1α, CINC and MIP-2. Immunopharmacol Immunotoxicol 2024:1-9. [PMID: 39632508 DOI: 10.1080/08923973.2024.2436089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Acute lung injury is a crucial pathological state, particularly in some severe infectious respiratory illnesses, distinguished by acute inflammation, pulmonary edema, hypoxia, and neutrophil recruitment. Cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) play a vital role in neutrophil recruitment. OBJECTIVE Here, we validated the potential repressing effect of atorvastatin on acute lung injury induced by lipopolysaccharide (LPS) in mice. MATERIALS AND METHODS Mice were injected with LPS (250 μg/kg; i.p.) daily for 7 days, and atorvastatin (25 and 50 mg/kg; orally) daily along with LPS. RESULTS Atorvastatin ameliorated oxidative stress as evidenced by increased reduced glutathione (GSH) and nuclear factor-erythroid 2 related factor 2 (Nrf2) levels and decreased malondialdehyde (MDA) levels. Additionally, it lessened inflammatory biomarkers including tumor necrosis factor-alpha (TNF-α), mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), CINC, and MIP-2, as well as hypoxia biomarker hypoxia-inducible factor-1α (HIF-1α). Moreover, atorvastatin slowed the progression of lung tissue histological lesions. CONCLUSION Collectively, the present study suggests that, atorvastatin effectively protects against LPS-induced acute lung injury through inhibition of oxidative stress, inflammation, hypoxia, and neutrophil recruitment.
Collapse
Affiliation(s)
- Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | | | - Rania Elgohary
- Department of Narcotics, Ergogenics and Poisons, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
McCullough M, Joshi IV, Pereira NL, Fuentes N, Krishnan R, Druey KM. Targeting cytoskeletal biomechanics to modulate airway smooth muscle contraction in asthma. J Biol Chem 2024; 301:108028. [PMID: 39615690 DOI: 10.1016/j.jbc.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
To contract, to deform, and remodel, the airway smooth muscle cell relies on dynamic changes in the structure of its mechanical force-bearing cytoskeleton. These alternate between a "fluid-like" (relaxed) state characterized by weak contractile protein-protein interactions within the cytoskeletal apparatus and a "solid-like" (contractile) state promoted by strong and highly organized molecular interactions. In this review, we discuss the roles for actin, myosin, factors promoting actin polymerization and depolymerization, adhesome complexes, and cell-cell junctions in these dynamic processes. We describe the relationship between these cytoskeletal factors, extracellular matrix components of bronchial tissue, and mechanical stretch and other changes within the airway wall in the context of the physical mechanisms of cytoskeletal fluidization-resolidification. We also highlight studies that emphasize the distinct processes of cell shortening and force transmission in airway smooth muscle and previously unrecognized roles for actin in cytoskeletal dynamics. Finally, we discuss the implications of these discoveries for understanding and treating airway obstruction in asthma.
Collapse
Affiliation(s)
- Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ilin V Joshi
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nicolas L Pereira
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, Massachusetts, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Atorvastatin induces downregulation of matrix metalloproteinase-2/9 in MDA-MB-231 triple negative breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:22. [PMID: 36445561 DOI: 10.1007/s12032-022-01880-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases, mainly responsible of extracellular tissue remodeling. Abundant expression of MMPs leads to a number of tumorigenic processes including proliferation, angiogenesis, metastasis and invasion. Therefore, suppressing MMP expression is particularly important in cancer. Atorvastatin is a member of statin family, with cholesterol-lowering properties. Recently, it has emerged as a potential anticancer agent. Multiple researchers have reported promising results of atorvastatin use in cancer therapies. However, its effect on the expression of matrix metalloproteinases in breast cancer is unknown. In the present study, we have confirmed the apoptotic activity of atorvastatin on highly metastatic MDA-MB-231 triple negative breast cancer cells and investigated the gene expression of MMP-2/9. In this regard, MTT analysis was performed to evaluate cytotoxicity. Apoptotic activity was assessed by Annexin V binding and multicaspase assays. Western blot analysis was used to detect the apoptosis-related proteins. RT-PCR analysis was performed to evaluate the mRNA expression levels of MMP-2/9. Results indicated that atorvastatin reduces cell viability significantly at 5 µM after 48 h of treatment (p < 0.0001). It also induces caspase-dependent apoptosis, alters the expression of Bax and Bcl-2 in favour of apoptosis and stimulates cell cycle arrest at S phase (p < 0.05). Moreover, atorvastatin downregulates the mRNA expression of MMP-2 and MMP-9 significantly (p < 0.05). In conclusion, these results demonstrate for the first time that atorvastatin inhibits MMP-2 and MMP-9 gene expression in MDA-MB-231 cells, in addition to inducing caspase-dependent apoptosis.
Collapse
|
4
|
Mehrabi S, Torkan J, Hosseinzadeh M. Effect of atorvastatin on serum periostin and blood eosinophils in asthma - a placebo-controlled randomized clinical trial. J Int Med Res 2021; 49:3000605211063721. [PMID: 34904467 PMCID: PMC8689629 DOI: 10.1177/03000605211063721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the effect of atorvastatin on serum periostin level and blood eosinophil count in patients with asthma. Methods Patients diagnosed with asthma were enrolled and randomised into an intervention or placebo group, to receive 40 mg atorvastatin or similar placebo, daily, for 8 weeks. Spirometry was performed at baseline, and at the end of weeks 4 and 8; patients also provided blood samples and completed an asthma control test (ACT) at baseline and at the end of week 8. Primary study outcomes were blood eosinophil count and serum periostin levels. Results Eighty patients completed the study (40 per group). Mean ACT scores were similar between the intervention and placebo groups at baseline (17.95 ± 3.75 versus 17.98 ± 3.77, respectively), and improved in the intervention group (19.88 ± 3.28), but remained unchanged in the placebo group (18.6 ± 3.26) during the treatment period. No statistically significant differences in spirometric changes, blood eosinophil count or serum periostin levels were observed between the groups during the treatment period. Conclusion Spirometric parameters and inflammatory markers did not change significantly in response to atorvastatin treatment, and did not differ between the placebo and intervention groups.
Collapse
Affiliation(s)
- Samrad Mehrabi
- Division of Pulmonology, Department of Internal Medicine, 48435Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalal Torkan
- Department of Internal Medicine, 48435Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massood Hosseinzadeh
- Department of Pathology, 48435Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Mo Y, Bae B, Kim Y, Kang H, Lee HS, Cho SH, Kang HR. Antiasthmatic effect of atorvastatin via modulation of macrophage activation. ALLERGY ASTHMA & RESPIRATORY DISEASE 2021. [DOI: 10.4168/aard.2021.9.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yosep Mo
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Yuldam Kim
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hanbit Kang
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Sang-Heon Cho
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Division of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Division of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Simvastatin Attenuates Abdominal Aortic Aneurysm Formation Favoured by Lack of Nrf2 Transcriptional Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6340190. [PMID: 32617140 PMCID: PMC7315306 DOI: 10.1155/2020/6340190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
Surgical intervention is currently the only option for an abdominal aortic aneurysm (AAA), preventing its rupture and sudden death of a patient. Therefore, it is crucial to determine the pathogenic mechanisms of this disease for the development of effective pharmacological therapies. Oxidative stress is said to be one of the pivotal factors in the pathogenesis of AAAs. Thus, we aimed to evaluate the significance of nuclear factor erythroid 2-related factor 2 (Nrf2) transcriptional activity in the development of AAA and to verify if simvastatin, administered as pre- and cotreatment, may counteract this structural malformation. Experiments were performed on mice with inhibited transcriptional activity of Nrf2 (tKO) and wild-type (WT) counterparts. We used a model of angiotensin II- (AngII-) induced AAA, combined with a fat-enriched diet. Mice were administered with AngII or saline for up to 28 days via osmotic minipumps. Simvastatin administration was started 7 days before the osmotic pump placement and then continued until the end of the experiment. We found that Nrf2 inactivation increased the risk of development and rupture of AAA. Importantly, these effects were reversed by simvastatin in tKO mice, but not in WT. The abrupt blood pressure rise induced by AngII was mitigated in simvastatin-treated animals regardless of the genotype. Simvastatin-affected parameters that differed between the healthy structure of the aorta and aneurysmal tissue included immune cell infiltration of the aortic wall, VCAM1 mRNA and protein level, extracellular matrix degradation, TGF-β1 mRNA level, and ERK phosphorylation, but neither oxidative stress nor the level of Angiotensin II Type 1 Receptor (AT1R). Taken together, the inhibition of Nrf2 transcriptional activity facilitates AAA formation in mice, which can be prevented by simvastatin. It suggests that statin treatment of patients with hypercholesterolemia might have not only a beneficial effect in terms of controlling atherosclerosis but also potential AAA prevention.
Collapse
|
7
|
El-Mahdy NA, El-Sayad MES, El-Kadem AH, Abu-Risha SES. Targeting IL-10, ZO-1 gene expression and IL-6/STAT-3 trans-signaling by a combination of atorvastatin and mesalazine to enhance anti-inflammatory effects and attenuates progression of oxazolone-induced colitis. Fundam Clin Pharmacol 2020; 35:143-155. [PMID: 32383169 DOI: 10.1111/fcp.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease characterized by diffused inflammation of the colon and rectum mucosa. The pathogenesis of UC is multifactorial, and the exact underlying mechanisms remain poorly understood. This study aims to investigate the effect of mesalazine and atorvastatin combination in enhancing anti-inflammatory effects and attenuates progression of oxazolone colitis in rats. In the present study, male albino rats (N = 60) were divided into six groups (10 rats each), the first two groups served as normal control and a control saline group. Colitis was induced by intra-rectal administration of oxazolone in the 5th and 7th days after pre-sensitization. Then, rats were divided into untreated group, groups treated with mesalazine or atorvastatin or their combination. Colitis was assessed by colon length, body weight, and incidence of diarrhea, rectal bleeding, and histopathology of colon tissue. Colon tissues were used for measuring interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), IL-13, signal transducer and activator of transcription-3 (STAT-3), myeloperoxidase activity (MPO), reduced glutathione(GSH), and tissue expression of IL-10, tight junction protein zonula occludens (ZO-1), and caspase-3 genes. The combination therapy significantly attenuated progression of UC by decreasing incidence of diarrhea, rectal bleeding, weight loss, IL-13, IL-6, TNF-α, STAT-3, caspase-3, and MPO activity and significantly increased IL-10, ZO-1, colon length, and GSH content, and these effects were more superior to single drugs. These findings showed that combination therapy was able to ameliorate progression of UC and enhance anti-inflammatory effects possibly by restoring IL-10 and ZO-1 levels and limiting IL-6/STAT-3 trans-signaling.
Collapse
Affiliation(s)
- Nageh Ahmed El-Mahdy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Magda El-Sayed El-Sayad
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Aya Hassan El-Kadem
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Sally El-Sayed Abu-Risha
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
8
|
Dantas PHDS, Matos ADO, da Silva Filho E, Silva-Sales M, Sales-Campos H. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int Rev Immunol 2020; 39:188-202. [PMID: 32379561 DOI: 10.1080/08830185.2020.1762597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is an innate immune receptor found in the surface of several immune and non-immune cells. Since its first description in 2000, this molecule and its soluble form (sTREM-1) have been implicated in many diseases with infectious and noninfectious origins. As an amplifier of inflammation, the membrane-associated TREM-1 (mTREM-1) isoform induces the production of pro-inflammatory mediators, thus contributing to the pathogenesis of diseases such as sepsis, arthritis, colitis and infections. In this context, many studies have used molecules capable of inhibiting TREM-1 activity as anti-inflammatory drugs. In this regard, a few peptides have been showing promising results in the amelioration of detrimental immune responses. Some commercially available drugs, including corticosteroids and antibiotics, with known anti-inflammatory effects, have also shown activity in TREM-1 signaling. Therefore, considering the potential of this receptor as a therapeutic target, the present review encompasses the main compounds explored so far in TREM-1 modulation, highlighting and critically discussing its effects and major drawbacks of such approaches.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Ernandes da Silva Filho
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| |
Collapse
|
9
|
Singh A, Srinivasan AK, Chakrapani LN, Kalaiselvi P. LOX-1, the Common Therapeutic Target in Hypercholesterolemia: A New Perspective of Antiatherosclerotic Action of Aegeline. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8285730. [PMID: 31885819 PMCID: PMC6914969 DOI: 10.1155/2019/8285730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for oxidized low-density lipoprotein (Ox-LDL) in the aorta of aged rats. Ox-LDL initiates LOX-1 activation in the endothelium of lipid-accumulating sites of both animal and human subjects of hypercholesterolemia. Targeting LOX-1 may provide a novel diagnostic strategy towards hypercholesterolemia and vascular diseases. HYPOTHESIS This study was planned to address whether aegeline (AG) could bind to LOX-1 with a higher affinity and modulate the uptake of Ox-LDL in hypercholesterolemia. STUDY DESIGN Thirty-six Wistar rats were divided into six groups. The pathology group rats were fed with high-cholesterol diet (HCD) for 45 days, and the treatment group rats were fed with HCD and aegeline/atorvastatin (AV) for the last 30 days. In vivo and in vitro experiments were carried out to assay the markers of atherosclerosis like Ox-LDL and LOX-1 levels. Histopathological examination was performed. Oil Red O staining was carried out in the IC-21 cell line. Docking studies were performed. RESULTS AG administration effectively brought down the lipid levels induced by HCD. The lowered levels of Ox-LDL and LOX-1 in AG-administered rats deem it to be a potent antihypercholesterolemic agent. Compared to AV, AG had a pronounced effect in downregulating the expression of lipids evidenced by Oil Red O staining. AG binds with LOX-1 at a higher affinity validated by docking. CONCLUSION This study validates AG to be an effective stratagem in bringing down the lipid stress induced by HCD and can be deemed as an antihypercholesterolemic agent.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
- Preclinical Stroke Modelling Laboratory, Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605, USA
| | - Ashok Kumar Srinivasan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
- Department of HIV, National Institute for Research in Tuberculosis, Chennai, India
| | - Lakshmi Narasimhan Chakrapani
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
| | - Periandavan Kalaiselvi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
10
|
Tetrandrine Ameliorates Airway Remodeling of Chronic Asthma by Interfering TGF- β1/Nrf-2/HO-1 Signaling Pathway-Mediated Oxidative Stress. Can Respir J 2019; 2019:7930396. [PMID: 31781316 PMCID: PMC6875008 DOI: 10.1155/2019/7930396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background Imbalanced oxidative stress and antioxidant defense are involved in airway remodeling in asthma. It has been demonstrated that Tetrandrine has a potent role in antioxidant defense in rheumatoid arthritis and hypertension. However, the correlation between Tetrandrine and oxidative stress in asthma is utterly blurry. This study aimed to investigate the role of Tetrandrine on oxidative stress-mediated airway remolding. Materials and Methods Chronic asthma was established by ovalbumin (OVA) administration in male Wistar rats. Histopathology was determined by HE staining. Immunofluorescence was employed to detect the expression of α-SMA and Nrf-2. Level of oxidative stress and matrix metalloproteinases were examined by ELISA kits. Cell viability and cell cycle of primary airway smooth muscle cells (ASMCs) were evaluated by CCK8 and flow cytometry, respectively. Signal molecules were detected using western blot. Results Tetrandrine effectively impairs OVA-induced airway inflammatory and airway remodeling by inhibiting the expression of CysLT1 and CysLTR1. The increase of oxidative stress and subsequent enhancement of MMP9 and TGF-β1 expression were rescued by the administration of Tetrandrine in the rat model of asthma. In in vitro experiments, Tetrandrine markedly suppressed TGF-β1-evoked cell viability and cell cycle promotion of ASMCs in a dose-dependent manner. Furthermore, Tetrandrine promoted Nrf-2 nuclear transcription and activated its downstream HO-1 in vivo and in vitro. Conclusion Tetrandrine attenuates airway inflammatory and airway remodeling in rat model of asthma and TGF-β1-induced cell proliferation of ASMCs by regulating oxidative stress in primary ASMCs, suggesting that Tetrandrine possibly is an effective candidate therapy for asthma.
Collapse
|
11
|
Hosseinzadeh A, Bahrampour Juybari K, Kamarul T, Sharifi AM. Protective effects of atorvastatin on high glucose-induced oxidative stress and mitochondrial apoptotic signaling pathways in cultured chondrocytes. J Physiol Biochem 2019; 75:153-162. [PMID: 30796627 DOI: 10.1007/s13105-019-00666-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/03/2019] [Indexed: 12/23/2022]
Abstract
The high glucose concentration is able to disturb chondrocyte homeostasis and contribute to OA pathogenesis. This study was designed to investigate the protective effects of atorvastatin (ATO) on high glucose (HG)-mediated oxidative stress and mitochondrial apoptosis in C28I2 human chondrocytes. The protective effect of ATO (0.01 and 0.1 μM) on HG (75 mM)-induced oxidative stress and apoptosis was evaluated in C28I2 cells. The effects of ATO on HG-induced intracellular ROS production and lipid peroxidation were detected and the protein expression levels of Bax, Bcl-2, caspase-3, total and phosphorylated JNK and P38 MAPKs were analyzed by Western blotting. The mRNA expression levels of antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. Pretreatment with ATO remarkably increased the gene expression levels of antioxidant enzymes and reduced HG-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. Atorvastatin could considerably reduce HG-induced oxidative stress and mitochondrial apoptosis through increasing the expression of antioxidant enzymes. Atorvastatin may be considered as a promising agent to prevent high glucose-induced cartilage degradation in OA patients.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Bahrampour Juybari
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ma C, Zou L, Xia Y, Tu Y, Xue D, Yang Y, Liu D, Liu Y, Wu H, Dan H, You P. Extracts of Coleus forskohlii relieves cough and asthma symptoms via modulating inflammation and the extracellular matrix. J Cell Biochem 2018; 120:9648-9655. [PMID: 30520122 DOI: 10.1002/jcb.28243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
Asthma is characterized by airway inflammatory infiltration, which leads to airway remodeling and airway hyperreactivity. Coleus forskohlii (CFK) has been used to treat asthma, however, the mechanism involved is not clear. To explore the antiasthma mechanism of extracts of Coleus forskohlii (ECFK), guinea pigs were administered with a spray of phosphoric acid histamine, and rats were sensitized with ovalbumin (OVA). Hematoxylin and eosin staining (H&E) were used to evaluate pathological changes in lung tissue. Enzyme-linked immunosorbent assay (ELISA) was used to determine cytokine levels in serum and bronchoalveolar lavage fluid (BALF). Immunohistochemistry and Western blot analysis were used to assess the expression of intercellular cell adhesion molecule-1 (ICAM-1), phosphorylation of p65 (p-p65), matrix metallopeptidase 9 (MMP-9), and tissue inhibitor of metalloproteinase 1 (TIMP-1). After ECFK treatment, the asthma incubation period of guinea pigs was significantly prolonged. The H&E results showed that the number of eosinophils in the 12.8 g/kg ECFK group was significantly lower when compared with the control group. Moreover, ELISA results demonstrated that interleukin (IL)-4, IL-5, and IL-17 in serum and BALF were significantly decreased, and interferon-γ (IFN-γ) and IL-10 were increased after ECFK treatment. In addition, ECFK treatment resulted in downregulation of ICAM-1, p-p65, MMP-9, and TIMP-1 in lung tissue after being sensitized by OVA. In conclusion, our findings indicated that ECFK significantly alleviated OVA-induced inflammatory infiltration and airway remodeling in asthma. This study laid a theoretical foundation for the clinical use of ECFK.
Collapse
Affiliation(s)
- Chaozhi Ma
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Liyuan Zou
- Department of Prevention and Health Care, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Xia
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yijun Tu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Daquan Xue
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yanfang Yang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Dan Liu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yanwen Liu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Hezhen Wu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Hanxiong Dan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|