1
|
Wang G, Zhang G, Zhu N, Zhu C, Kang M, Zuo G, Niu Z, Ye W, Tian B, Cai R. Integrative analyses of RNA-seq and ChIP-seq Reveal MITF as a Target Gene of TFPI-2 in MDA231 Cells. Biochem Genet 2023; 61:1745-1757. [PMID: 36787085 DOI: 10.1007/s10528-023-10340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
Breast cancer is the most prevalent cancer in female patients worldwide. Tissue factor pathway inhibitor 2 (TFPI-2) is identified as an important tumor suppressor in various cancers. Recent studies have shown that TFPI-2 translocates into the nucleus, where it modulates the transcription of the matrix metalloproteinase-2 (MMP-2) gene. However, its biological role and molecular mechanisms in the progression of breast cancer remain unclear. In this study, we identified 5125 differentially expressed genes (DEGs) from RNA sequencing (RNA-seq) in TFPI-2-overexpressing MDA231 cells compared with control cells. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) analysis shown that cell cycle, cell differentiation, proteoglycans in cancer, and pathways associated with cancer were highly enriched in downregulated DEGs. Integration of the RNA-seq and ChIP-sequencing (ChIP-seq) data identified 73 genes directly controlled by TFPI-2 in MDA231 cells. Among them, melanocyte inducing transcription factor (MITF) gene expression was repressed by TFPI-2, which was further verified by a luciferase reporter assay and ChIP-quantitative PCR. Our study provides evidence of a novel role of TFPI-2 in human breast cancer involving targeting of the MITF.
Collapse
Affiliation(s)
- Guangli Wang
- Department of Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
| | - Gaofeng Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Ningxia Zhu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, 541004, Guangxi, People's Republic of China.
| | - Chunjiang Zhu
- Department of Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Mafei Kang
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Guidan Zuo
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Zhijie Niu
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Wei Ye
- Department of Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Baodong Tian
- Department of Genetics and Precision Medicine Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Rui Cai
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| |
Collapse
|
2
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
3
|
The influence of antioxidant dietary-derived polyphenolic combination on breast cancer: Molecular study. Biomed Pharmacother 2022; 149:112835. [PMID: 35325850 DOI: 10.1016/j.biopha.2022.112835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer remains a leading cause of female mortality worldwide. Therefore, novel complementary treatments have been sought. Recently, there has been a growing interest in investigating the possible complementary effects of polyphenolic compounds against various malignancies. In the present study, using MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, the anticancer efficacy of a polyphenolic mixture (PFM) was investigated. PFM is composed of curcumin, resveratrol, epigallocatechin gallate, and quercetin. PFM treatment led to a dose-dependent inhibition of cell proliferation, with IC50 values of 25.9 ± 3 µg/ml and 29.4 ± 0.9 µg/ml for MCF-7 and MDA-MB-231 cells, respectively. In addition, PFM induced apoptosis in MDA-MB-231 cells and cell cycle arrest at the S phase in MCF-7 cells. Using RT-qPCR, PFM treatment was observed to result in significant downregulation of the oncogenic miR-155 (P < 0.05), as well as significant downregulation of the rate-limiting glycolytic enzyme, hexokinase 2 (HK2) (P < 0.05), while upregulating the expression of the zinc finger E-box binding homeobox 2 gene (P < 0.01). PFM was also found to exert an anti-migration effect in breast cancer cells using the wound healing assay, as well as significantly (P < 0.05) increasing the median survival of Ehrlich ascites carcinoma (EAC) tumor-bearing mice. These results suggest that PFM possesses potential antitumor effects against breast cancer. A possible mechanism of action could be due to PFM's effect in modulating the expression of the glycolytic enzyme HK2 through suppression of miR-155 in MCF-7 cells. Combining polyphenolic compounds that interact with one another could result in synergistic effects that potentially target various tumour hallmarks.
Collapse
|
4
|
Wigner P, Bijak M, Saluk-Bijak J. The Green Anti-Cancer Weapon. The Role of Natural Compounds in Bladder Cancer Treatment. Int J Mol Sci 2021; 22:7787. [PMID: 34360552 PMCID: PMC8346071 DOI: 10.3390/ijms22157787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the second most common genitourinary cancer. In 2018, 550,000 people in the world were diagnosed with BC, and the number of new cases continues to rise. BC is also characterized by high recurrence risk, despite therapies. Although in the last few years, the range of BC therapy has considerably widened, it is associated with severe side effects and the development of drug resistance, which is hampering treatment success. Thus, patients are increasingly choosing products of natural origin as an alternative or complementary therapeutic options. Therefore, in this article, we aim to elucidate, using the available literature, the role of natural substances such as curcumin, sulforaphane, resveratrol, quercetin, 6-gingerol, delphinidin, epigallocatechin-3-gallate and gossypol in the BC treatment. Numerous clinical and preclinical studies point to their role in the modulation of the signaling pathways, such as cell proliferation, cell survival, apoptosis and cell death.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| |
Collapse
|
5
|
To KKW, Cho WCS. Flavonoids Overcome Drug Resistance to Cancer Chemotherapy by Epigenetically Modulating Multiple Mechanisms. Curr Cancer Drug Targets 2021; 21:289-305. [PMID: 33535954 DOI: 10.2174/1568009621666210203111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance is the major reason accounting for the treatment failure in cancer chemotherapy. Dysregulation of the epigenetic machineries is known to induce chemoresistance. It was reported that numerous genes encoding the key mediators in cancer proliferation, apoptosis, DNA repair, and drug efflux are dysregulated in resistant cancer cells by aberrant DNA methylation. The imbalance of various enzymes catalyzing histone post-translational modifications is also known to alter chromatin configuration and regulate multiple drug resistance genes. Alteration in miRNA signature in cancer cells also gives rise to chemoresistance. Flavonoids are a large group of naturally occurring polyphenolic compounds ubiquitously found in plants, fruits, vegetables and traditional herbs. There has been increasing research interest in the health-promoting effects of flavonoids. Flavonoids were shown to directly kill or re-sensitize resistant cancer cells to conventional anticancer drugs by epigenetic mechanisms. In this review, we summarize the current findings of the circumvention of drug resistance by flavonoids through correcting the aberrant epigenetic regulation of multiple resistance mechanisms. More investigations including the evaluation of synergistic anticancer activity, dosing sequence effect, toxicity in normal cells, and animal studies, are warranted to establish the full potential of the combination of flavonoids with conventional chemotherapeutic drugs in the treatment of cancer with drug resistance.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
6
|
Xia Y, Chen R, Lu G, Li C, Lian S, Kang TW, Jung YD. Natural Phytochemicals in Bladder Cancer Prevention and Therapy. Front Oncol 2021; 11:652033. [PMID: 33996570 PMCID: PMC8120318 DOI: 10.3389/fonc.2021.652033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals are natural small-molecule compounds derived from plants that have attracted attention for their anticancer activities. Some phytochemicals have been developed as first-line anticancer drugs, such as paclitaxel and vincristine. In addition, several phytochemicals show good tumor suppression functions in various cancer types. Bladder cancer is a malignant tumor of the urinary system. To date, few specific phytochemicals have been used for bladder cancer therapy, although many have been studied in bladder cancer cells and mouse models. Therefore, it is important to collate and summarize the available information on the role of phytochemicals in the prevention and treatment of bladder cancer. In this review, we summarize the effects of several phytochemicals including flavonoids, steroids, nitrogen compounds, and aromatic substances with anticancer properties and classify the mechanism of action of phytochemicals in bladder cancer. This review will contribute to facilitating the development of new anticancer drugs and strategies for the treatment of bladder cancer using phytochemicals.
Collapse
Affiliation(s)
- Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ruijiao Chen
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Guangzhen Lu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Changlin Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Taek-Won Kang
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
7
|
Chestnut C, Subramaniam D, Dandawate P, Padhye S, Taylor J, Weir S, Anant S. Targeting Major Signaling Pathways of Bladder Cancer with Phytochemicals: A Review. Nutr Cancer 2020; 73:2249-2271. [DOI: 10.1080/01635581.2020.1856895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Connor Chestnut
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Subhash Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Interdisciplinary Science and Technology Research Academy, University of Pune, Pune, India
| | - John Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Jackson J, Pandey R, Schmitt V. Part 1. Evaluation of Epigallocatechin Gallate or Tannic Acid Formulations of Hydrophobic Drugs for Enhanced Dermal and Bladder Uptake or for Local Anesthesia Effects. J Pharm Sci 2020; 110:796-806. [PMID: 33039439 DOI: 10.1016/j.xphs.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Epigallocatechin gallate (EGCG) and tannic acid (TA) are known to increase the aqueous solubility and cellular uptake of the hydrophobic drugs docetaxel, paclitaxel, amphotericin B, and curcumin. In this study the practical application of gallate-based solubilization phenomena for the uptake of these drugs into dermal and bladder tissue and of lidocaine for wound healing application was studied. The penetration of all these drugs into pig skin or docetaxel into pig bladder using EGCG or TA formulations was measured. Overall, EGCG and TA particulate or propylene glycol paste formulations of drugs allowed for greatly increased levels of drug uptake into skin as compared to control formulations. EGCG/propylene glycol pastes allowed for rapid lidocaine uptake into skin. EGCG and TA formulations of docetaxel allowed for approximately 10 fold increases in bladder tissue uptake of docetaxel over tween based solutions. Morphologically, both EGCG and TA caused a mild, dose dependent exfoliation of the bladder wall. Both EGCG and TA formed injectable viscous pastes with propylene glycol which solidified in water and degraded and released lidocaine over 2-35 days. These data support the use of EGCG and TA based formulations of certain drugs for improved dermal, bladder and wound applications.
Collapse
Affiliation(s)
- John Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2045 Wesbrook Mall, Vancouver, BC, Canada.
| | - Rakhi Pandey
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2045 Wesbrook Mall, Vancouver, BC, Canada
| | - Veronika Schmitt
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2045 Wesbrook Mall, Vancouver, BC, Canada
| |
Collapse
|
9
|
Role of Curcumin and (-)-Epigallocatechin-3- O-Gallate in Bladder Cancer Treatment: A Review. Cancers (Basel) 2020; 12:cancers12071801. [PMID: 32635637 PMCID: PMC7408736 DOI: 10.3390/cancers12071801] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of bladder cancer (BC) is increasing, and although current therapeutic approaches are effective in many cases, recurrence of BC is common. Therefore, it seems necessary to search not only for novel therapeutic approaches, but also for new therapeutic agents. Natural polyphenols, such as curcumin (CUR) and epigallocatechin gallate (EGCG), possess remarkable antitumor activity. Their biochemical mechanisms of action include regulation of signaling pathways, modeling of proteins involved in apoptosis and cell cycle inhibition, angiogenesis, and the proliferation, migration and adhesion of tumor cells. Both compounds also present antioxidant, anti-inflammatory, antibacterial and antiviral properties. CUR has been considered a promising candidate for the treatment of cystic fibrosis, Alzheimer's disease or malaria, whereas EGCG can play a supportive role in the treatment of obesity, metabolic and neurodegenerative diseases. The review summarizes the latest research on the role of CUR and EGCG in the treatment of BC. In particular, the effects of CUR and EGCG, and their prospects for use in BC therapy, their inhibition of cancer development and their prevention of multidrug resistance, are described. The literature's data indicate the possibility of achieving the effect of synergism of both polyphenols in BC therapy, which has been observed so far in the treatment of ovarian, breast and prostate cancer.
Collapse
|
10
|
Lee HY, Chen YJ, Chang WA, Li WM, Ke HL, Wu WJ, Kuo PL. Effects of Epigallocatechin Gallate (EGCG) on Urinary Bladder Urothelial Carcinoma-Next-Generation Sequencing and Bioinformatics Approaches. ACTA ACUST UNITED AC 2019; 55:medicina55120768. [PMID: 31805718 PMCID: PMC6955913 DOI: 10.3390/medicina55120768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022]
Abstract
Background and objectives: Bladder urothelial carcinoma is the most common type of genitourinary cancer. Patients with bladder cancer may have limited treatment efficacy related to drug toxicity, resistance or adverse effects, and novel therapeutic strategies to enhance treatment efficacy or increase sensitivity to drugs are of high clinical importance. Epigallocatechin gallate (EGCG) is a polyphenolic compound found in green tea leaves, and a potential anti-cancer agent in various cancer types through modulating and regulating multiple signaling pathways. The current study aimed to explore the role and novel therapeutic targets of EGCG on bladder urothelial carcinoma. Materials and Methods: The BFTC-905 cells, human urinary bladder transitional cell carcinoma (TCC) cell line, were treated with EGCG or water for 24 hours, and the expression profiles of mRNAs and microRNAs were analyzed using next generation sequencing (NGS). The enriched biological functions were determined using different bioinformatics databases. Results: A total of 108 differentially expressed genes in EGCG-treated bladder TCC cells were identified, which were mainly involved in nicotinamide adenine dinucleotide (NAD) biogenesis, inflammatory response and oxidation-reduction metabolism. Moreover, several microRNA-mRNA interactions that potentially participated in the response of bladder TCC to EGCG treatment, including miR-185-3p- ARRB1 (arrestin beta 1), miR-3116- MGAT5B (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase B), miR-31-5p-TNS1 (tensin 1), miR-642a-5p-TNS1, miR-1226-3p- DLG2 (discs large homolog 2), miR-484-DLG2, and miR-22-3p- PPM1K (protein phosphatase 1K). Conclusions: The current findings provide insights into novel therapeutic targets and underlying mechanisms of action of EGCG treatment in bladder cancer.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung 900, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung 900, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung 900, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Carlos-Reyes Á, López-González JS, Meneses-Flores M, Gallardo-Rincón D, Ruíz-García E, Marchat LA, Astudillo-de la Vega H, Hernández de la Cruz ON, López-Camarillo C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front Genet 2019; 10:79. [PMID: 30881375 PMCID: PMC6406035 DOI: 10.3389/fgene.2019.00079] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms control gene expression during normal development and their aberrant regulation may lead to human diseases including cancer. Natural phytochemicals can largely modulate mammalian epigenome through regulation of mechanisms and proteins responsible for chromatin remodeling. Phytochemicals are mainly contained in fruits, seeds, and vegetables as well as in foods supplements. These compounds act as powerful cellular antioxidants and anti-carcinogens agents. Several dietary compounds such as catechins, curcumin, genistein, quercetin and resveratrol, among others, exhibit potent anti-tumor activities through the reversion of epigenetic alterations associated to oncogenes activation and inactivation of tumor suppressor genes. In this review, we summarized the actual knowledge about the role of dietary phytochemicals in the restoration of aberrant epigenetic alterations found in cancer cells with a particular focus on DNA methylation and histone modifications. Furthermore, we discussed the mechanisms by which these natural compounds modulate gene expression at epigenetic level and described their molecular targets in diverse types of cancer. Modulation of epigenetic activities by phytochemicals will allow the discovery of novel biomarkers for cancer prevention, and highlights its potential as an alternative therapeutic approach in cancer.
Collapse
Affiliation(s)
- Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Manuel Meneses-Flores
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratorio de Investigación Traslacional en Cáncer y Terapia Celular, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| |
Collapse
|
12
|
Luo X, Guo L, Zhang L, Hu Y, Shang D, Ji D. Bioinformatics analysis of microarray profiling identifies the mechanism of focal adhesion kinase signalling pathway in proliferation and apoptosis of breast cancer cells modulated by green tea polyphenol epigallocatechin 3-gallate. J Pharm Pharmacol 2018; 70:1606-1618. [PMID: 30187481 DOI: 10.1111/jphp.13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study aimed to investigate potential gene and signal pathway associated with tumour progression. METHODS Related microarray data set of breast cancer was obtained from Gene Expression Omnibus database, and differential-expressed genes (DEGs) between two control samples and two treated samples were analysed using statistical software R. We collected 50 epigallocatechin-3-gallate(EGCG)-related genes and 119 breast cancer-related genes to create a knowledge base for following pathway analysis. KEY FINDINGS A total of 502 mRNAs were identified as DEGs based on microarray analysis. Upregulated DEGs mainly enriched in nuclear nucleosome, cell adhesion, DNA packaging complex, Wnt-activated receptor activity, etc., while the downregulated DEGs significantly enriched in ncRNA processing, mitotic nuclear division, DNA helicase activity, etc. DEGs mostly enriched in gap junction, cell cycle, oxidative phosphorylation, focal adhesion, etc. EGCG suppressed FAK signalling pathway. Furthermore, EGCG could inhibit breast cancer cell proliferation and promote apoptosis by modulating CCND1. CONCLUSIONS Epigallocatechin 3-gallate might exert influence on breast cancer progression through inhibiting focal adhesion kinase (FAK) signalling pathway.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lihua Guo
- Department of Dialysis Room of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Hu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongmei Shang
- Department of Outpatient, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Degang Ji
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|