1
|
Chen S, Zhong J, Hu B, Shao N, Deng C. Whole-genome microRNA sequencing analysis in patients with pulmonary hypertension. Front Genet 2023; 14:1250629. [PMID: 38125751 PMCID: PMC10731455 DOI: 10.3389/fgene.2023.1250629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological disorder with multiple clinical manifestations that lead to cardiovascular and respiratory diseases in most patients. Recent studies have revealed that microRNAs (miRNAs) play important roles as upstream signaling molecules in several diseases, including PH. However, miRNAs that can be used as diagnostic or prognostic biomarkers for PH have not been identified. Thus, in this study, peripheral blood samples obtained from patients with PH and healthy individuals were subjected to genome-wide miRNA sequencing and transcriptome analysis. We screened 136 differentially expressed miRNAs in patients with PH and verified that four differentially expressed miRNAs, namely, hsa-miR-1304-3p, hsa-miR-490-3p, hsa-miR-11400, and hsa-miR-31-5p, could be used as clinical diagnostic biomarkers for pulmonary arterial hypertension. Our findings provide a basis for further in-depth investigations of the specific mechanisms of miRNAs in PH.
Collapse
Affiliation(s)
- Shi Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jinnan Zhong
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Bingzhu Hu
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Nan Shao
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chaosheng Deng
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Wu GR, Zhou M, Wang Y, Zhou Q, Zhang L, He L, Zhang S, Yu Q, Xu Y, Zhao J, Xiong W, Wang CY. Blockade of Mbd2 by siRNA-loaded liposomes protects mice against OVA-induced allergic airway inflammation via repressing M2 macrophage production. Front Immunol 2022; 13:930103. [PMID: 36090987 PMCID: PMC9453648 DOI: 10.3389/fimmu.2022.930103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy.MethodsStudies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model.ResultsAsthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production.ConclusionsThe above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.
Collapse
Affiliation(s)
- Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital; School of Medicine, Tongji University, Shanghai, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qilin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- *Correspondence: Cong-Yi Wang, ; Weining Xiong,
| |
Collapse
|
3
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
5
|
Wu J, Liu Y, Hu J, Xie J, Nie Z, Yin W. Protective activity of asatone against ovalbumin-induced allergic asthma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2487-2494. [PMID: 33165354 PMCID: PMC7642709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Allergic asthma is a chronic lung disease characterized by wheezing, coughing, chest tightness and shortness of breath. Clinically, the treatments against asthma focus on controlling the symptoms rather than inhibiting recurrence radically. Additionally, local and systemic side effects caused by current treatments are worthy of attention. Therefore, a novel therapeutic strategy against asthma is needed. Asatone is a pharmacologically active component from Radix et Rhizoma Asari, which has anti-inflammatory effects in lipopolysaccharide-induced lung injury. In the present study, we showed that asatone could protect mice against OVA-induced asthma, as manifested by attenuating inflammation infiltration, mucus production, and airway hyperreactivity and suppressing the elevation of IL-4, IL-5, and IL-13 in broncho-alveolar lavage fluid. Overall, results of the present study support use of asatone as a potent therapeutic strategy for clinical treatment of allergic asthma.
Collapse
Affiliation(s)
- Jing Wu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yaqiong Liu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jun Hu
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jun Xie
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zuqiong Nie
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Wanling Yin
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
6
|
Miao K, Pan T, Mou Y, Zhang L, Xiong W, Xu Y, Yu J, Wang Y. Scutellarein inhibits BLM-mediated pulmonary fibrosis by affecting fibroblast differentiation, proliferation, and apoptosis. Ther Adv Chronic Dis 2020; 11:2040622320940185. [PMID: 32843954 PMCID: PMC7418478 DOI: 10.1177/2040622320940185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial pulmonary disease that has a poor prognosis. Scutellarein, which is extracted from the traditional Chinese medicine Erigeron breviscapus, is used to treat a variety of diseases; however, the use of scutellarein for the treatment of pulmonary fibrosis and the related mechanisms of action have not been fully explored. Methods This study was conducted using a well-established mouse model of pulmonary fibrosis induced by bleomycin (BLM). The antifibrotic effects of scutellarein on histopathologic manifestations and fibrotic marker expression levels were examined. The effects of scutellarein on fibroblast differentiation, proliferation, and apoptosis and on related signaling pathways were next investigated to demonstrate the underlying mechanisms. Results In the present study, we found that scutellarein alleviated BLM-induced pulmonary fibrosis, as indicated by histopathologic manifestations and the expression levels of fibrotic markers. Further data demonstrated that the ability of fibroblasts to differentiate into myofibroblasts was attenuated in scutellarein-treated mice model. In addition, we obtained in vitro evidence that scutellarein inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-β/Smad signaling, inhibited cellular proliferation by repressing PI3K/Akt signaling, and increased apoptosis of fibroblasts by affecting Bax/Bcl2 signaling. Discussion In general, scutellarein might exert therapeutic effects on pulmonary fibrosis by altering the differentiation, proliferation, and apoptosis of fibroblasts. Although scutellarein has been demonstrated to be safe in mice, further studies are required to investigate the efficacy of scutellarein in patients with IPF.
Collapse
Affiliation(s)
- Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Wuhan, China
| | - Ting Pan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Wuhan, China
| | - Yong Mou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Wuhan, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Wuhan, China Department of Respiratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Wuhan, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | | |
Collapse
|
7
|
Yu J, Deng Y, Han M. Blocking protein phosphatase 2A with a peptide protects mice against bleomycin-induced pulmonary fibrosis. Exp Lung Res 2020; 46:234-242. [PMID: 32584210 DOI: 10.1080/01902148.2020.1774823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Emerging data indicate that endothelial-mesenchymal transition (EndMT) is involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). A previous study noted that blocking the activity of protein phosphatase 2 A (PP2A) could attenuate EndMT. However, the treatment effects of PP2A inhibitors in pulmonary fibrosis remain not investigated. In the present study, we used a PP2A inhibitor, a newly designed peptide named TAT-Y127WT, to determine the role of PP2A in pulmonary fibrosis. Herein, we showed that TAT-Y127WT protected mice against BLM-induced pulmonary fibrosis by attenuating lung injury and fibrosis. Furthermore, a mechanistic study indicated that TAT-Y127WT could alleviate EndMT in the lungs following BLM induction. Overall, our data showed that PP2A might participate in pulmonary fibrogenesis by promoting EndMT, and TAT-Y127WT could be a potential candidate for new anti-fibrotic therapies for IPF patients.
Collapse
Affiliation(s)
- Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanjun Deng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Han
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Pasca S, Jurj A, Petrushev B, Tomuleasa C, Matei D. MicroRNA-155 Implication in M1 Polarization and the Impact in Inflammatory Diseases. Front Immunol 2020; 11:625. [PMID: 32351507 PMCID: PMC7174664 DOI: 10.3389/fimmu.2020.00625] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages are known to have an impact in cytokine signaling in the myriad of organs in which they reside and are classically known to be either pro-inflammatory (M1), anti-inflammatory (M2). Different classes of signaling molecules influence these states, of which, microRNAs represent key modulators. These are short RNA species approximately 21 to 23 nucleotides long that generally act by binding to the 3' untranslated region of mRNAs, regulating their translation, and, thus, the quantity of protein they encode. From these species, microRNA-155 was observed to be of great importance for M1 polarization. Because of it's major implication in M1 polarization microRNA-155 was shown to be implicated in different inflammatory diseases. To name a few, microRNA-155 was shown to be modified in patients with asthma and to correlate with asthma symptoms in mouse model; it has been shown to modulate the activity of foam cells and influence the dimensions of the atherosclerotic plaque and it has also been shown to be of crucial influence in transducing the signal of LPS in septic shock. Because of this, the current review aims to offer an overview of the role of microRNA-155 in M1 polarization, the implication that this poses for the pathophysiology of inflammatory diseases and the potential therapeutic possibilities that this knowledge might bring. Currently, microRNA-155 has been used in clinical trials as a marker of inflammation, but the question remains if it's inhibition will be useful in inflammatory diseases, as other products might have a better cost/benefit ratio.
Collapse
Affiliation(s)
- Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- “Octavian Fodor” Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Daniela Matei
- “Octavian Fodor” Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Gastroenterology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Xu Y, Yu J, Huang Z, Fu B, Tao Y, Qi X, Mou Y, Hu Y, Wang Y, Cao Y, Jiang D, Xie J, Xu Y, Zhao J, Xiong W. Circular RNA hsa_circ_0000326 acts as a miR-338-3p sponge to facilitate lung adenocarcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:57. [PMID: 32248836 PMCID: PMC7132982 DOI: 10.1186/s13046-020-01556-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
Background Circular RNAs (circRNAs) are a novel class of noncoding RNAs that regulate gene expression at the transcriptional or posttranscriptional level. According to recent studies, circRNAs are involved in the pathogenesis of cancer, but the roles of circRNAs in lung adenocarcinoma are largely unknown. Methods In this study, we identified a novel upregulated circRNA, hsa_circ_0000326, in human lung adenocarcinoma tissues using microarray analysis and qRT-PCR. We then explored the biological role of hsa_circ_0000326 using gain- and loss-of-function assays in adenocarcinoma cells. Bioinformatics databases were used to screen for potential target miRNAs and the luciferase reporter assays and RNA-FISH further validated the interaction. Downstream protein was detected by western blot. Finally, we established xenografts in nude mice to assess the function of hsa_circ_0000326 in vivo. Results We found that high expression of hsa_circ_0000326 was correlated with tumor size, regional lymph node status and differentiation in human lung adenocarcinoma. Additionally, we conducted gain- and loss-of-function assays and found that hsa_circ_0000326 acted as a positive regulator of cell proliferation and migration and a negative regulator of apoptosis. Mechanistic studies showed that hsa_circ_0000326 acted as a miR-338-3p sponge and altered the function of miR-338-3p, which in turn upregulated the expression of the downstream target RAB14 and affected the proliferation, migration and apoptosis of lung adenocarcinoma cells. Conclusions Collectively, our study results reveal crucial roles for hsa_circ_0000326 in the proliferation, migration and apoptosis of lung adenocarcinoma cells and suggest that hsa_circ_0000326 may represent a potential therapeutic target in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuzhu Xu
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Respiratory, Zhuzhou Central Hospital, Zhuzhou, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bohua Fu
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yu Tao
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xuefei Qi
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yong Mou
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yinan Hu
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yong Cao
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Wuhan Clinical Medical Research Center for Chronic Airway Medicine, NHC Key Laboratory of Pulmonary Diseases, Key cite of National Clinical Research Center for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, 1095 Jiefang Ave, Wuhan, 430030, China. .,Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 200011, China.
| |
Collapse
|
10
|
Feketea G, Bocsan CI, Popescu C, Gaman M, Stanciu LA, Zdrenghea MT. A Review of Macrophage MicroRNAs' Role in Human Asthma. Cells 2019; 8:cells8050420. [PMID: 31071965 PMCID: PMC6562863 DOI: 10.3390/cells8050420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma.
Collapse
Affiliation(s)
- Gavriela Feketea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Corina I Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Cristian Popescu
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Luminita A Stanciu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK.
| | - Mihnea T Zdrenghea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
- Department of Hematology, Ion Chiricuta Oncology Institute, 400010 Cluj-Napoca, Romania.
| |
Collapse
|