1
|
Wang D, Dai J, Suo C, Wang S, Zhang Y, Chen X. Molecular subtyping of esophageal squamous cell carcinoma by large-scale transcriptional profiling: Characterization, therapeutic targets, and prognostic value. Front Genet 2022; 13:1033214. [DOI: 10.3389/fgene.2022.1033214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The tumor heterogeneity of the transcriptional profiles is independent of genetic variation. Several studies have successfully identified esophageal squamous cell carcinoma (ESCC) subtypes based on the somatic mutation profile and copy number variations on the genome. However, transcriptome-based classification is limited. In this study, we classified 141 patients with ESCC into three subtypes (Subtype 1, Subtype 2, and Subtype 3) via tumor sample gene expression profiling. Differential gene expression (DGE) analysis of paired tumor and normal samples for each subtype revealed significant difference among subtypes. Moreover, the degree of change in the expression levels of most genes gradually increased from Subtype 1 to Subtype 3. Gene set enrichment analysis (GSEA) identified the representative pathways in each subtype: Subtype 1, abnormal Wnt signaling pathway activation; Subtype 2, inhibition of glycogen metabolism; and Subtype 3, downregulation of neutrophil degranulation process. Weighted gene co-expression network analysis (WGCNA) was used to elucidate the finer regulation of biological pathways and discover hub genes. Subsequently, nine hub genes (CORO1A, CD180, SASH3, CD52, CD300A, CD14, DUSP1, KIF14, and MCM2) were validated to be associated with survival in ESCC based on the RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) database. The clustering analysis of ESCC granted better understanding of the molecular characteristics of ESCC and led to the discover of new potential therapeutic targets that may contribute to the clinical treatment of ESCC.
Collapse
|
2
|
Li J, Wang H, Cao F, Cheng Y. A bioinformatics analysis for diagnostic roles of the E2F family in esophageal cancer. J Gastrointest Oncol 2022; 13:2115-2131. [PMID: 36388667 PMCID: PMC9660042 DOI: 10.21037/jgo-22-855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Esophageal cancer (EC) is the eighth most commonly occurring cancer worldwide and the sixth leading cause of cancer-related deaths. The therapeutic effect of EC patients is not ideal, and new biomarkers are needed to guide diagnosis and prognosis of EC patients. E2F family transcription factors are among the most important links in the cell cycle regulatory network. E2Fs dysregulation not only promotes the early stages of tumor development but also the progression of benign tumors to malignant tumors. E2F is expected to be a new biomarker. The prognostic significance of the E2F family in EC requires further research. METHODS We analyzed The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis (GEPIA), and GeneMANIA databases to obtain RNA-sequencing data and clinical data. The clinical data included age, gender, race, stage, type, status, etc. The prognosis outcome included overall survival (OS) and progression-free interval (PFI). Subsequently, we conducted further research on gene expressions, enrichment analysis, interaction network, and prognostic values by R software, containing ggplot2, ComplexHeatmap, DESeq2, pROC R package, based on t-test, Wilcoxon rank sum test, Spearman rank correlation analysis, log-rank test and COX model. RESULTS We found that mRNA transcription levels of E2F1, E2F3-8 were more highly expressed in esophageal carcinoma (ESCA) tissues than in normal tissues. E2F8 expression was correlated with tumor stage [Pr(>F)=0.00856]. E2F-related genes played a role in development and differentiation, and were prevalent in the endoplasmic reticulum lumen, Golgi lumen, and lipoprotein particle, catalyzing translation activities and lipid metabolism. Each gene was found to be related to each other to some degree. The GeneMANIA network analysis revealed links between E2Fs and other genes. We compared the correlations between 24 kinds of tumor-infiltrating immune cells and E2Fs. E2F1 (AUC =0.945, CI: 0.890-1.000) and E2F7 (AUC =0.958, CI: 0.920-0.996) exhibited higher predictive power accuracy. However, only E2F7 was closely related to OS [HR =1.91 (1.16-3.16), P=0.011]. CONCLUSIONS We discover that E2F7 is a prognostic biomarker. E2F family may take part in the development of EC through lipid metabolism pathways, which is helpful to predict the prognosis of EC patients and guide accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Huan Wang
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Fangli Cao
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Chen YR, Li HN, Zhang LJ, Zhang C, He JG. Protein Arginine Methyltransferase 5 Promotes Esophageal Squamous Cell Carcinoma Proliferation and Metastasis via LKB1/AMPK/mTOR Signaling Pathway. Front Bioeng Biotechnol 2021; 9:645375. [PMID: 34124017 PMCID: PMC8193860 DOI: 10.3389/fbioe.2021.645375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is the eighth most common cancer in the world. Protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes symmetric and asymmetric methylation on arginine residues of histone and non-histone proteins, is overexpressed in many cancers. However, whether or not PRMT5 participates in the regulation of ESCC remains largely unclear. Methods: PRMT5 mRNA and protein expression in ESCC tissues and cell lines were examined by RT-PCR, western blotting, and immunohistochemistry assays. Cell proliferation was examined by RT-PCR, western blotting, immunohistochemistry assays, MTT, and EdU assays. Cell apoptosis and cell cycle were examined by RT-PCR, western blotting, immunohistochemistry assays, and flow cytometry. Cell migration and invasion were examined by RT-PCR, western blotting, immunohistochemistry assays, and wound-healing and transwell assays. Tumor volume, tumors, and mouse weight were measured in different groups. Lung tissues with metastatic foci, the number of nodules, and lung/total weight were measured in different groups. Results: In the present study, the PRMT5 expression level was dramatically upregulated in ESCC clinical tissues as well as ESCC cell lines (ECA109 and KYSE150). Furthermore, knocking down PRMT5 obviously suppressed cell migration, invasion, proliferation, and cell arrest in G1 phase and promoted cell apoptosis in ESCC cells. Meanwhile, downregulating PRMT5 also increased the expression levels of Bax, caspase-3, and caspase-9, while expression levels of Bax-2, MMP-2, MMP-9, and p21 were decreased, which are members of the cyclin-dependent kinase family. Furthermore, knocking down PRMT5 could increase the expression of LKB1 and the phosphorylation (p)-AMPK expression and decrease the p-mTOR level. Additionally, overexpression of LKB1 could reveal anti-tumor effects in ESCC cell lines by inhibiting ESCC cell, migration, invasion, and proliferation and accelerating cell apoptosis. Besides, upregulating LKB1 expression could increase the levels of Bax, caspase-3, and caspase-9 and weaken the levels of Bax-2, MMP-2, and MMP-9. Moreover, knocking down PRMT5 could weaken the tumor growth and lung metastasis in vivo with upregulating the LKB1 expression and the p-AMPK level and downregulating the p-mTOR expression. Conclusion: PRMT5 may act as a tumor-inducing agent in ESCC by modulating LKB1/AMPK/mTOR pathway signaling.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Hua-Ni Li
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Lian-Jun Zhang
- Department of Critical Care Medicine, Heze Municipal Hospital, Heze, China
| | - Chong Zhang
- Magnetic Resonance Room, Heze Municipal Hospital, Heze, China
| | - Jin-Guang He
- Department of Oncology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
4
|
Pereira J, Santos M, Delabio R, Barbosa M, Smith M, Payão S, Rasmussen L. Analysis of Gene Expression of miRNA-106b-5p and TRAIL in the Apoptosis Pathway in Gastric Cancer. Genes (Basel) 2020; 11:genes11040393. [PMID: 32260540 PMCID: PMC7230378 DOI: 10.3390/genes11040393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of gastric gancer. TNF-related apoptosis-inducing ligand (TRAIL) is a protein able to promote apoptosis in cancer cells, however not in gastric cancer, which presents resistance to apoptosis via TRAIL. It is believed that MicroRNA-106b-5p might be involved in this resistance, although its role in Gastric Cancer is unclear. We aimed to determine the expression of microRNA-106b-5p and TRAIL in patients with gastric diseases, infected by H. pylori, and understand the relationship between these genes and their role in apoptosis and the gastric cancer pathways. H. pylori was detected by PCR, gene expression analysis was performed by real-time-qPCR, and bioinformatics analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape software. A total of 244 patients were divided into groups (Control, Gastritis, and Cancer); H. pylori was detected in 42.2% of the samples. The cancer group had a poor expression of TRAIL (p < 0.0001) and overexpression of microRNA-106b-5p (p = 0.0005), however, our results confirmed that these genes are not directly related to each other although both are apoptosis-related regulators. Our results also indicated that H. pylori decreases microRNA-106b-5p expression and that this is a carcinogenic bacterium responsible for gastric diseases.
Collapse
Affiliation(s)
- Jéssica Pereira
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Santos
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Roger Delabio
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Barbosa
- Department of Biosciences and Technology of Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, Goiás 74605-050, Brazil;
| | - Marília Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil;
| | - Spencer Payão
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Lucas Rasmussen
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
- Correspondence: ; Tel.: +55-14-34021856
| |
Collapse
|
5
|
Emerging Role of Non-Coding RNAs in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2019; 21:ijms21010258. [PMID: 31905958 PMCID: PMC6982002 DOI: 10.3390/ijms21010258] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly prevalent tumor and is associated with ethnicity, genetics, and dietary intake. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) have been reported as functional regulatory molecules involved in the development of many human cancers, including ESCC. Recently, several ncRNAs have been detected as oncogenes or tumor suppressors in ESCC progression. These ncRNAs influence the expression of specific genes or their associated signaling pathways. Moreover, interactions of ncRNAs are evident in ESCC, as miRNAs regulate the expression of lncRNAs, and further, lncRNAs and circRNAs function as miRNA sponges to compete with the endogenous RNAs. Here, we discuss and summarize the findings of recent investigations into the role of ncRNAs (miRNAs, lncRNAs, and circRNAs) in the development and progression of ESCC and how their interactions regulate ESCC development.
Collapse
|
6
|
Liu H, Ma L, Wang J. Overexpression of miR-25 is associated with progression and poor prognosis of cholangiocarcinoma. Exp Ther Med 2019; 18:2687-2694. [PMID: 31555370 DOI: 10.3892/etm.2019.7844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly aggressive type of malignancy. MicroRNA (miR)-25 has been demonstrated to be involved in the genesis of numerous cancer types. The aim of the present study was to investigate the prognostic value and functional role of miR-25 in CCA. The expression of miR-25 was determined by reverse transcription-quantitative (RT-q)PCR. The association between miR-25 expression and clinicopathological features was analyzed using the χ2 test. Kaplan-Meier survival analysis and Cox linear regression were performed to explore the prognostic value of miR-25. The effects of miR-25 on the biological behavior of CCA cells were determined using loss-and gain-of-function experiments in CCA cell lines. Upregulated miR-25 expression was observed in CCA tissues and cell lines compared with that in the respective controls (all P<0.05). Patients with high expression of miR-25 in CCA tissues had a comparatively higher tumor-nodes-metastasis stage (P=0.026), a higher rate of lymph node metastasis (P=0.032) and a shorter overall survival rate (log-rank P=0.022). miR-25 was determined to be an independent prognostic factor for CCA patients (P=0.036). In vitro, transfection with miR-25 inhibitor suppressed cell viability, migration and invasion, while miR-25 mimics had the opposite effect. These results indicated that miR-25 functions as an oncogene and is involved in tumor progression in CCA. miR-25 may serve as a prognostic biomarker and a potential therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Lujuan Ma
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Jian Wang
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
7
|
Li F, Huang J, Liu J, Xu W, Yuan Z. Multivariate analysis of clinicopathological and prognostic significance of miRNA 106b~25 cluster in gastric cancer. Cancer Cell Int 2019; 19:200. [PMID: 31384175 PMCID: PMC6664745 DOI: 10.1186/s12935-019-0918-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background miRNA 106b~25 cluster were demonstrated to be an oncogene. In previous study, we had analyzed the diagnostic significance of miRNA 106b~25 based on its carcinogenesis effect. The significance of miRNA 106b~25 for prognosis of gastric cancer were not researched. Methods We applied multivariate analysis of PCA, PLS-DA and Cox Regression for clinicopathological features and survival time to explore the significance of miRNA 106b~25 expression in plasma and cancer tissues for gastric cancer. Results The expression of miRNA 106b, miRNA 93 and miRNA 25 in plasma were positively correlated with their expression in tumor tissues. Via PCA analysis, it was found that miRNA 106b~25 expression in plasma and tumor, T, N and TNM stage were correlated with each other. Via PLS-DA analysis, we identified that T, N and TNM stage were important factors for miRNA 106b~25 expression both in plasma and tumor (all VIP value > 1.2). According to loading weights of variables for the first and second components, it was found that the importance of the miRNA 106b~25s expression carried with the progressed stage of gastric cancer. In the survival analysis, COX regression showed that T stage, plasma miRNA 106b and tumor miRNA 93 were significant risk factors for overall survival [HR: 0.400 (0.205–0.780); P = 0.007; HR: 0.371 (0.142–0.969), P = 0.043; 0.295 (0.134–0.650), P = 0.002]. Conclusion Plasma and tumor miRNA 106b~25 expression correlated with T, N and TNM stage. Increased miRNA 106b~25 expression was important characters carried with gastric cancer progression. T stage, plasma miRNA106b and tumor miRNA 93 significant risk factors for overall survival. Electronic supplementary material The online version of this article (10.1186/s12935-019-0918-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangxuan Li
- 1Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060 China.,2Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Jinchao Huang
- 2Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China.,3Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Juntian Liu
- 2Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Wengui Xu
- 3Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| | - Zhiyong Yuan
- 1Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin, 300060 China
| |
Collapse
|
8
|
Niu M, Feng Y, Zhang N, Shao T, Zhang H, Wang R, Yao Y, Yao R, Wu Q, Cao J, Liu X, Liu Y, Xu K. High expression of miR-25 predicts favorable chemotherapy outcome in patients with acute myeloid leukemia. Cancer Cell Int 2019; 19:122. [PMID: 31080363 PMCID: PMC6505210 DOI: 10.1186/s12935-019-0843-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background Acute myeloid leukemia (AML) pertains to a hematologic malignancy with heterogeneous therapeutic responses. Improvements in risk stratification in AML patients are warranted. MicroRNAs have been associated with the pathogenesis of AML. Methods To examine the prognostic value of miR-25, 162 cases with de novo AML were classified into two groups according to different treatment regimens. Results In the chemotherapy group, cases with upregulated miR-25 expression showed relatively longer overall survival (OS; P = 0.0086) and event-free survival (EFS; P = 0.019). Multivariable analyses revealed that miR-25 upregulation is an independent predictor for extended OS (HR = 0.556, P = 0.015) and EFS (HR = 0.598, P = 0.03). In addition, allogeneic hematopoietic stem cell transplantation (allo-HSCT) circumvented the poor prognosis that was related to miR-25 downregulation with chemotherapy. The expression level pattern of miR-25 coincided with AML differentiation and proliferation, which included HOXA and HOXB cluster members, as well as the HOX cofactor MEIS1. The MYH9 gene was identified as a direct target of miR-25. Conclusions The miR-25 levels are correlated with prognosis in AML independently of other powerful molecular markers. The expression of miR-25 may contribute to the selection of the optimal treatment regimen between chemotherapy and allo-HCST for AML patients.
Collapse
Affiliation(s)
- Mingshan Niu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yuan Feng
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Ninghan Zhang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Tingting Shao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Huihui Zhang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Rong Wang
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yao Yao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Ruosi Yao
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Qingyun Wu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Jiang Cao
- 2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Xuejiao Liu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,3Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yubo Liu
- 4School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Kailin Xu
- Blood Diseases Institute, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China.,2Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| |
Collapse
|