1
|
Yang J, Sun Y, Cao F, Yang B, Kuang H. Natural Products from Physalis alkekengi L. var. franchetii (Mast.) Makino: A Review on Their Structural Analysis, Quality Control, Pharmacology, and Pharmacokinetics. Molecules 2022; 27:molecules27030695. [PMID: 35163960 PMCID: PMC8840080 DOI: 10.3390/molecules27030695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
The calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino (P. alkekengi), a medicinal and edible plant, are frequently used as heat-clearing and detoxifying agents in thousands of Chinese medicine prescriptions. For thousands of years in China, they have been widely used in clinical practice to treat throat disease, hepatitis, and bacillary dysentery. This systematic review summarizes their structural analysis, quality control, pharmacology, and pharmacokinetics. Furthermore, the possible development trends and perspectives for future research studies on this medicinal plant are discussed. Relevant information on the calyxes and fruits of P. alkekengi was collected from electronic databases, Chinese herbal classics, and Chinese Pharmacopoeia. Moreover, information was collected from ancient documents in China. The components isolated and identified in P. alkekengi include steroids, flavonoids, phenylpropanoids, alkaloids, nucleosides, terpenoids, megastigmane, aliphatic derivatives, organic acids, coumarins, and sucrose esters. Steroids, particularly physalins and flavonoids, are the major characteristic and bioactive ingredients in P. alkekengi. According to the literature, physalins are synthesized by the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways, and flavonoids are synthesized by the phenylpropanoid pathway. Since the chemical components and pharmacological effects of P. alkekengi are complex and varied, there are different standards for the evaluation of its quality and efficacy. In most cases, the analysis was performed using high-performance liquid chromatography coupled with ultraviolet detection. A pharmacological study showed that the crude extracts and isolated compounds from P. alkekengi had extensive in vitro and in vivo biological activities (e.g., anti-inflammatory, anti-tumor, immunosuppressive, antibacterial, anti-leishmanial, anti-asthmatic, anti-diabetic, anti-oxidative, anti-malarial, anti-Alzheimer's disease, and vasodilatory). Moreover, the relevant anti-inflammatory and anti-tumor mechanisms were elucidated. The reported activities indicate the great pharmacological potential of P. alkekengi. Similarly, studies on the pharmacokinetics of specific compounds will also contribute to the progress of clinical research in this setting.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Feng Cao
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.Y.); (Y.S.); (B.Y.)
- Correspondence: ; Tel.: +86-0451-82197188
| |
Collapse
|
2
|
Yu T, Huang D, Wu H, Chen H, Chen S, Cui Q. Navigating Calcium and Reactive Oxygen Species by Natural Flavones for the Treatment of Heart Failure. Front Pharmacol 2021; 12:718496. [PMID: 34858167 PMCID: PMC8630744 DOI: 10.3389/fphar.2021.718496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Heart failure (HF), the leading cause of death among men and women world-wide, causes great health and economic burdens. HF can be triggered by many factors, such as coronary artery disease, heart attack, cardiomyopathy, hypertension, obesity, etc., all of which have close relations with calcium signal and the level of reactive oxygen species (ROS). Calcium is an essential second messenger in signaling pathways, playing a pivotal role in regulating the life and death of cardiomyocytes via the calcium-apoptosis link mediated by the cellular level of calcium. Meanwhile, calcium can also control the rate of energy production in mitochondria that are the major resources of ROS whose overproduction can lead to cell death. More importantly, there are bidirectional interactions between calcium and ROS, and such interactions may have therapeutic implications in treating HF through finely tuning the balance between these two by certain drugs. Many naturally derived products, e.g., flavones and isoflavones, have been shown to possess activities in regulating calcium and ROS simultaneously, thereby leading to a balanced microenvironment in heart tissues to exert therapeutic efficacies in HF. In this mini review, we aimed to provide an updated knowledge of the interplay between calcium and ROS in the development of HF. In addition, we summarized the recent studies (in vitro, in vivo and in clinical trials) using natural isolated flavones and isoflavones in treating HF. Critical challenges are also discussed. The information collected may help to evoke multidisciplinary efforts in developing novel agents for the potential prevention and treatment of HF.
Collapse
Affiliation(s)
- Tianhao Yu
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Danhua Huang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Haokun Wu
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Haibin Chen
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sen Chen
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qingbin Cui
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on In Vivo Pharmacological Effects and Bioavailability Traits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1987588. [PMID: 34594472 PMCID: PMC8478534 DOI: 10.1155/2021/1987588] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Luteolin is a naturally occurring secondary metabolite belonging to the class of flavones. As many other natural flavonoids, it is often found in combination with glycosides in many fruits, vegetables, and plants, contributing to their biological and pharmacological value. Many preclinical studies report that luteolin present excellent antioxidant, anticancer, antimicrobial, neuroprotective, cardioprotective, antiviral, and anti-inflammatory effects, and as a consequence, various clinical trials have been designed to investigate the therapeutic potential of luteolin in humans. However, luteolin has a very limited bioavailability, which consequently affects its biological properties and efficacy. Several drug delivery strategies have been developed to raise its bioavailability, with nanoformulations and lipid carriers, such as liposomes, being the most intensively explored. Pharmacological potential of luteolin in various disorders has also been underlined, but to some of them, the exact mechanism is still poorly understood. Given the great potential of this natural antioxidant in health, this review is aimed at providing an extensive overview on the in vivo pharmacological action of luteolin and at stressing the main features related to its bioavailability, absorption, and metabolism, while essential steps determine its absolute health benefits and safety profiles. In addition, despite the scarcity of studies on luteolin bioavailability, the different drug delivery formulations developed to increase its bioavailability are also listed here.
Collapse
|
4
|
Naia L, Pinho CM, Dentoni G, Liu J, Leal NS, Ferreira DMS, Schreiner B, Filadi R, Fão L, Connolly NMC, Forsell P, Nordvall G, Shimozawa M, Greotti E, Basso E, Theurey P, Gioran A, Joselin A, Arsenian-Henriksson M, Nilsson P, Rego AC, Ruas JL, Park D, Bano D, Pizzo P, Prehn JHM, Ankarcrona M. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol 2021; 19:57. [PMID: 33761951 PMCID: PMC7989211 DOI: 10.1186/s12915-021-00979-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.
Collapse
Affiliation(s)
- Luana Naia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catarina M Pinho
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Giacomo Dentoni
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nuno Santos Leal
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bernadette Schreiner
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Lígia Fão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Niamh M C Connolly
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | | | | | - Makoto Shimozawa
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Per Nilsson
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Biochemistry, University of Coimbra, Coimbra, Portugal
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Jochen H M Prehn
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Yin S, Feng Z, Mo A, Ding Y, Wu J. Effect of Shenfu Injection on Isolated Empty Beating Hearts from Miniature Pigs. Braz J Cardiovasc Surg 2020; 35:484-489. [PMID: 32864928 PMCID: PMC7454632 DOI: 10.21470/1678-9741-2019-0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate the effect of Shenfu (SF) injection on donor heart preservation. METHODS Twelve pigs were randomly divided into SF group (n=6) and control group (n=6). After eight hours of perfusion, the differences in hemoglobin, the expression of Bcl-2 and BAX, and changes in the myocardial ultrastructure were compared to illustrate the effects of SF injection in heart preservation. RESULTS The differences in free hemoglobin between the SF group and the control group were statistically significant (P=0.001), and there was significant interaction of groups with times (P=0.019), but the perfusion time may not be associated with the hemoglobin concentration (P=0.616). According to Western blotting analysis, the expression of Bcl-2 was higher in the SF group than in the control group, while the expression of BAX was not different between the two groups. As to ultrastructural changes, both groups exhibited mitochondrial swelling and myofilament lysis, but the degree of damage in the SF group was smaller. CONCLUSION Our study suggests that the application of SF injection for heart preservation may protect against cardiomyocytes and erythrocytes apoptosis, and Bcl-2 protein may play a role in these physiological processes.
Collapse
Affiliation(s)
- Shijie Yin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhiqiang Feng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Ansheng Mo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Yi Ding
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| | - Jun Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|