1
|
Nuzzo S, Iaboni M, Ibba ML, Rienzo A, Musumeci D, Franzese M, Roscigno G, Affinito A, Petrillo G, Quintavalle C, Ciccone G, Esposito CL, Catuogno S. Selection of RNA aptamers targeting hypoxia in cancer. Front Mol Biosci 2022; 9:956935. [PMID: 36188221 PMCID: PMC9515380 DOI: 10.3389/fmolb.2022.956935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia plays a crucial role in tumorigenesis and drug resistance, and it is recognised as a major factor affecting patient clinical outcome. Therefore, the detection of hypoxic areas within the tumour micro-environment represents a useful way to monitor tumour growth and patients’ responses to treatments, properly guiding the choice of the most suitable therapy. To date, non-invasive hypoxia imaging probes have been identified, but their applicability in vivo is strongly limited due to an inadequate resistance to the low oxygen concentration and the acidic pH of the tumour micro-environment. In this regard, nucleic acid aptamers represent very powerful tools thanks to their peculiar features, including high stability to harsh conditions and a small size, resulting in easy and efficient tumour penetration. Here, we describe a modified cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach that allows the isolation of specific RNA aptamers for the detection of the hypoxic phenotype in breast cancer (BC) cells. We demonstrated the effectiveness of the proposed method in isolating highly stable aptamers with an improved and specific binding to hypoxic cells. To our knowledge, this is the first example of a cell-SELEX approach properly designed and modified to select RNA aptamers against hypoxia-related epitopes expressed on tumour cell surfaces. The selected aptamers may provide new effective tools for targeting hypoxic areas within the tumour with great clinical potential.
Collapse
Affiliation(s)
| | | | - Maria Luigia Ibba
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Anna Rienzo
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, “Federico II” University of Naples, Naples, Italy
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
- Percuros B.V., Enschede, Netherlands
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | - Cristina Quintavalle
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Giuseppe Ciccone
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Carla Lucia Esposito
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
- *Correspondence: Carla Lucia Esposito, ; Silvia Catuogno,
| | - Silvia Catuogno
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
- *Correspondence: Carla Lucia Esposito, ; Silvia Catuogno,
| |
Collapse
|
2
|
Salikhova D, Bukharova T, Cherkashova E, Namestnikova D, Leonov G, Nikitina M, Gubskiy I, Akopyan G, Elchaninov A, Midiber K, Bulatenco N, Mokrousova V, Makarov A, Yarygin K, Chekhonin V, Mikhaleva L, Fatkhudinov T, Goldshtein D. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int J Mol Sci 2021; 22:ijms22094694. [PMID: 33946667 PMCID: PMC8125106 DOI: 10.3390/ijms22094694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.
Collapse
Affiliation(s)
- Diana Salikhova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
- Correspondence:
| | - Tatiana Bukharova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Elvira Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Daria Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Georgy Leonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Maria Nikitina
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Ilya Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Gevorg Akopyan
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Andrey Elchaninov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Konstantin Midiber
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Natalia Bulatenco
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Victoria Mokrousova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Andrey Makarov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Konstantin Yarygin
- Institute of Biomedical Chemistry, 119121 Moscow, Russia;
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Liudmila Mikhaleva
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
3
|
Maltseva DV, Poloznikov AA, Artyushenko VG. Selective changes in expression of integrin α-subunits in the intestinal epithelial Caco-2 cells under conditions of hypoxia and microcirculation. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal epithelial cells are constantly exposed to physiologically hypoxic environment. The further reduction of tissue oxygen delivery may result in the intestinal epithelial cells function impairment, being a sign of active inflammation. The cultivation conditions are important when performing in vitro studies, since those may affect the cells’ properties. The study was aimed to assess the integrin receptor expression in the human colon adenocarcinoma Caco-2 cell line when simulating both hypoxic condition using the cobalt chloride and microcirculation. Transcriptome analysis revealed the significantly increased expression of the integrin receptors ITGA2 and ITGA5 α2- and α5-subunit genes under hypoxic conditions, as well as the reduction of ITGA5 during incubation in the microfluidic chip. The expression of β-subunits did not change. Analysis of microRNA transcriptomes revealed the decreased expression of hsa-miR-766-3p and hsa-miR-23b-5p microRNA. One of the validated targets for both microRNAs is mRNA of gene ITGA5. It has been shown that microcirculation makes it possible to bring the intestinal epithelial cells cultivation conditions closer to physiological conditions. The possible biological significance of the detected integrin expression profile alterations and the role of microcirculation have been discussed.
Collapse
Affiliation(s)
- DV Maltseva
- National Research University Higher School of Economics, Moscow, Russia
| | - AA Poloznikov
- National Research University Higher School of Economics, Moscow, Russia
| | | |
Collapse
|
4
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
5
|
Schulten HJ, Bakhashab S. Meta-Analysis of Microarray Expression Studies on Metformin in Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20133173. [PMID: 31261735 PMCID: PMC6650866 DOI: 10.3390/ijms20133173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated that metformin (MTF) acts with variable efficiency as an anticancer agent. The pleiotropic anticancer effects of MTF on cancer cells have not been fully explored yet. By interrogating the Gene Expression Omnibus (GEO) for microarray expression data, we identified eight eligible submissions, representing five different studies, that employed various conditions including different cell lines, MTF concentrations, treatment durations, and cellular components. A compilation of the data sets of 13 different conditions contained 443 repeatedly up- and 387 repeatedly down-regulated genes; the majority of these 830 differentially expressed genes (DEGs) were associated with higher MTF concentrations and longer MTF treatment. The most frequently upregulated genes include DNA damage inducible transcript 4 (DDIT4), chromodomain helicase DNA binding protein 2 (CHD2), endoplasmic reticulum to nucleus signaling 1 (ERN1), and growth differentiation factor 15 (GDF15). The most commonly downregulated genes include arrestin domain containing 4 (ARRDC4), and thioredoxin interacting protein (TXNIP). The most significantly (p-value < 0.05, Fisher’s exact test) overrepresented protein class was entitled, nucleic acid binding. Cholesterol biosynthesis and other metabolic pathways were specifically affected by downregulated pathway molecules. In addition, cell cycle pathways were significantly related to the data set. Generated networks were significantly related to, e.g., carbohydrate and lipid metabolism, cancer, cell cycle, and DNA replication, recombination, and repair. A second compilation comprised genes that were at least under one condition up- and in at least another condition down-regulated. Herein, the most frequently deregulated genes include nuclear paraspeckle assembly transcript 1 (NEAT1) and insulin induced gene 1 (INSIG1). The most significantly overrepresented protein classes in this compilation were entitled, nucleic acid binding, ubiquitin-protein ligase, and mRNA processing factor. In conclusion, this study provides a comprehensive list of deregulated genes and biofunctions related to in vitro MTF application and individual responses to different conditions. Biofunctions affected by MTF include, e.g., cholesterol synthesis and other metabolic pathways, cell cycle, and DNA replication, recombination, and repair. These findings can assist in defining the conditions in which MTF exerts additive or synergistic effects in cancer treatment.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|