1
|
Abstract
Etiologically, 5% of all cancers worldwide are caused by the high-risk human papillomaviruses (hrHPVs). These viruses encode two oncoproteins (E6 and E7) whose expression is required for cancer initiation and maintenance. Among their cellular targets are the p53 and the retinoblastoma tumor suppressor proteins. Inhibition of the hrHPV E6-mediated ubiquitylation of p53 through the E6AP ubiquitin ligase results in the stabilization of p53, leading to cellular apoptosis. We utilized a live cell high throughput screen to determine whether exogenous microRNA (miRNA) transfection had the ability to stabilize p53 in hrHPV-positive cervical cancer cells expressing a p53-fluorescent protein as an in vivo reporter of p53 stability. Among the miRNAs whose transfection resulted in the greatest p53 stabilization was 375-3p that has previously been reported to stabilize p53 in HeLa cells, providing validation of the screen. The top 32 miRNAs in addition to 375-3p were further assessed using a second cell-based p53 stability reporter system as well as in non-reporter HeLa cells to examine their effects on endogenous p53 protein levels, resulting in the identification of 23 miRNAs whose transfection increased p53 levels in HeLa cells. While a few miRNAs that stabilized p53 led to decreases in E6AP protein levels, all targeted HPV oncoprotein expression. We further examined subsets of these miRNAs for their abilities to induce apoptosis and determined whether it was p53-mediated. The introduction of specific miRNAs revealed surprisingly heterogeneous responses in different cell lines. Nonetheless, some of the miRNAs described here have potential as therapeutics for treating HPV-positive cancers. Importance Human papillomaviruses cause approximately 5% of all cancers worldwide and encode genes that contribute to both the initiation and maintenance of these cancers. The viral oncoprotein E6 is expressed in all HPV-positive cancers and functions by targeting the degradation of p53 through the engagement of the cellular ubiquitin ligase E6AP. Inhibiting the degradation of p53 leads to apoptosis in HPV-positive cancer cells. Using a high throughput live cell assay we identified several miRNAs whose transfection stabilize p53 in HPV-positive cells. These miRNAs have the potential to be used in the treatment of HPV-positive cancers.
Collapse
|
2
|
Wang J, Chen S. RACK1 promotes miR-302b/c/d-3p expression and inhibits CCNO expression to induce cell apoptosis in cervical squamous cell carcinoma. Cancer Cell Int 2020; 20:385. [PMID: 32792866 PMCID: PMC7418423 DOI: 10.1186/s12935-020-01435-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cervical squamous cell carcinoma (CSCC) is one of the main causes of cancer-related deaths in women worldwide. The present study was conducted with the main objective of determining the potential role of receptor for activated protein kinase C1 (RACK1) in CSCC through regulation of microRNA (miR)-302b/c/d-3p and Cyclin O (CCNO). Methods The expression of RACK1, miR-302b/c/d-3p and CCNO in CSCC tissues and cells was measured by RT-qPCR and Western blot analysis. The interaction among RACK1, miR-302b/c/d-3p, and CCNO was determined by dual luciferase reporter assay. Subsequently, effects of RACK1, miR-302b/c/d-3p and CCNO on CSCC cell cycle entry, proliferation and apoptosis were investigated with the use of flow cytometry, EdU, and TUNEL assays. Furthermore, mouse xenograft model of CSCC cells was established to verify the function of RACK1 in vivo. Results RACK1 and miR-302b/c/d-3p were down-regulated and CCNO was overexpressed in CSCC. CCNO was identified as the target of miR-302b/c/d-3p. Importantly, overexpressed miR-302b-3p, miR-302c-3p or miR-302d-3p or RACK1 enhanced the apoptosis and suppressed the proliferation of CSCC cells in vitro, while inhibiting tumor growth in vivo by targeting CCNO. Conclusions On all accounts, overexpressed RACK1 could dampen the progression of CSCC through miR-302b/c/d-3p-mediated CCNO inhibition.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, Guangxi Zhuang Autonomous Region 533000 People's Republic of China
| | - Shengcai Chen
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, Guangxi Zhuang Autonomous Region 533000 People's Republic of China
| |
Collapse
|
3
|
Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci 2020; 111:1065-1075. [PMID: 31957939 PMCID: PMC7156871 DOI: 10.1111/cas.14317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/05/2023] Open
Abstract
As a novel class of noncoding RNAs, microRNAs (miRNAs) can effectively silence their target genes at the posttranscriptional level. Various biological processes, such as cell proliferation, differentiation, and motility, are regulated by miRNAs. In different diseases and different stages of disease, miRNAs have various expression patterns, which makes them candidate prognostic markers and therapeutic targets. Abnormal miRNA expression has been detected in numerous neoplastic diseases in humans, which indicates the potential role of miRNAs in tumorigenesis. Previous studies have indicated that miRNAs are involved in nearly the entire process of tumor development. MicroRNA‐302a, miR‐302b, miR‐302c, miR‐302d, and miR‐367 are members of the miR‐302/367 cluster that plays various biological roles in diverse neoplastic diseases by targeting different genes. These miRNAs have been implicated in several unique characteristics of cancer, including the evasion of growth suppressors, the sustained activation of proliferative signaling, the evasion of cell death and senescence, and the regulation of angiogenesis, invasion, and metastasis. This review provides a critical overview of miR‐302/367 cluster dysregulation and the subsequent effects in cancer and highlights the vast potential of members of this cluster as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Jiajia Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Kim HS, Hammill JT, Scott DC, Chen Y, Min J, Rector J, Singh B, Schulman BA, Guy RK. Discovery of Novel Pyrazolo-pyridone DCN1 Inhibitors Controlling Cullin Neddylation. J Med Chem 2019; 62:8429-8442. [PMID: 31465221 DOI: 10.1021/acs.jmedchem.9b00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemical control of cullin neddylation is attracting increased attention based largely on the successes of the NEDD8-activating enzyme (E1) inhibitor pevonedistat. Recently reported chemical probes enable selective and time-dependent inhibition of downstream members of the neddylation trienzymatic cascade including the co-E3, DCN1. In this work, we report the optimization of a novel class of small molecule inhibitors of the DCN1-UBE2M interaction. Rational X-ray co-structure enabled optimization afforded a 25-fold improvement in potency relative to the initial screening hit. The potency gains are largely attributed to additional hydrophobic interactions mimicking the N-terminal acetyl group that drives binding of UBE2M to DCN1. The compounds inhibit the protein-protein interaction, block NEDD8 transfer in biochemical assays, engage DCN1 in cells, and selectively reduce the steady-state neddylation of Cul1 and Cul3 in two squamous carcinoma cell lines harboring DCN1 amplification.
Collapse
Affiliation(s)
- Ho Shin Kim
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40508 , United States
| | - Jared T Hammill
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40508 , United States
| | - Daniel C Scott
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Yizhe Chen
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40508 , United States
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Jonah Rector
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40508 , United States
| | - Bhuvanesh Singh
- Department of Surgery, Laboratory of Epithelial Cancer Biology , Memorial Sloan Kettering Cancer Center , New York New York 10065 , United States
| | - Brenda A Schulman
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States.,Department of Molecular Machines and Signaling , Max Planck Institute of Biochemistry , Martinsried 82152 , Germany
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40508 , United States
| |
Collapse
|
5
|
Meng F, Ou J, Liu J, Li X, Meng Y, Yan L, Deng P, Sun B. MicroRNA-877 is downregulated in cervical cancer and directly targets MACC1 to inhibit cell proliferation and invasion. Exp Ther Med 2019; 18:3650-3658. [PMID: 31602243 DOI: 10.3892/etm.2019.7989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Previously, a number of microRNAs (miRNAs) have been reported to be dysregulated in cervical cancer, and dysregulated miRNAs may play crucial roles in the development and progression of cervical cancer. Hence, investigating the detailed roles of miRNAs that are aberrantly expressed in cervical cancer and the underlying molecular mechanisms is essential for early diagnosis and effective therapeutic approaches. miRNA-877 (miR-877) was found to be downregulated in hepatocellular carcinoma and renal cell carcinoma, and function as a tumor-suppressive miRNA. However, how miR-877 exerts an effect in cervical cancer progression and its underlying molecular mechanisms remains to be elucidated. In the current study, reverse transcription-quantitative PCR was performed to determine miR-877 expression in cervical cancer tissues and cell lines. The effects of miR-877 overexpression on cervical cancer cell proliferation and invasion were evaluated using MTT and Transwell cell invasion assays. In the present study, miR-877 was significantly downregulated in cervical cancer tissues and cell lines, and the decreased expression levels of miR-877 were significantly associated with increased International Federation of Gynecology and Obstetric stage as well as increased lymph node metastasis in patients with cervical cancer. Upregulation of miR-877 using miR-877 mimics resulted in the decreased proliferation and invasion of cervical cancer cells. Metastasis-associated in colon cancer-1 (MACC1) was assessed using bioinformatics analyses to determine whether it could be a potential target gene of miR-877, and the results were confirmed using a luciferase reporter assay. Furthermore, MACC1 was markedly upregulated in cervical cancer tissues, and its level was negatively correlated with the miR-877 level. Overexpression of miR-877 resulted in decreased expression levels of MACC1 in cervical cancer cells at both the mRNA and protein levels. In addition, the functional effects of MACC1 knockdown were similar to those induced by upregulated miR-877 in cervical cancer cells. MACC1 restored miR-877 overexpression-mediated suppression of cervical cancer cell proliferation and invasion. In conclusion, miR-877 may play an antitumor role in cervical cancer by directly targeting MACC1, which suggests that this miRNA may be a promising therapeutic target for the treatment of patients with such an aggressive gynecological cancer.
Collapse
Affiliation(s)
- Fanxu Meng
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Jian Ou
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Jinyu Liu
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Xindi Li
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Yanli Meng
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Ling Yan
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Ping Deng
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Baosheng Sun
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| |
Collapse
|