1
|
Cabral de Carvalho Corrêa D, Dias Oliveira I, Mascaro Cordeiro B, Silva FA, de Seixas Alves MT, Saba-Silva N, Capellano AM, Dastoli P, Cavalheiro S, Caminada de Toledo SR. Abnormal spindle-like microcephaly-associated (ASPM) gene expression in posterior fossa brain tumors of childhood and adolescence. Childs Nerv Syst 2021; 37:137-145. [PMID: 32591873 DOI: 10.1007/s00381-020-04740-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruna Mascaro Cordeiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Frederico Adolfo Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Pathology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Nasjla Saba-Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil. .,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Paralogous HOX13 Genes in Human Cancers. Cancers (Basel) 2019; 11:cancers11050699. [PMID: 31137568 PMCID: PMC6562813 DOI: 10.3390/cancers11050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
Collapse
|
3
|
Li Z, Chen Y, An T, Liu P, Zhu J, Yang H, Zhang W, Dong T, Jiang J, Zhang Y, Jiang M, Yang X. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:139. [PMID: 30922391 PMCID: PMC6440136 DOI: 10.1186/s13046-019-1134-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nuciferine (NF), extracted from the leaves of N. nucifera Gaertn, has been shown to exhibit anti-tumor and anti-viral pharmacological properties. It can also penetrate the blood brain barrier (BBB). However, the mechanism by which NF inhibits glioblastoma (GBM) progression is not well understood. We aimed to determine the anti-tumor effect of NF on GBM cell lines and clarify the potential molecular mechanism involved. METHODS U87MG and U251 cell lines were used in vitro to assess the anti-tumor efficacy of NF. Cytotoxicity, viability, and proliferation were evaluated by MTT and colony formation assay. After Annexin V-FITC and PI staining, flow cytometry was performed to evaluate apoptosis and cell cycle changes in NF-treated GBM cells. Wound healing and Transwell assays were used to assess migration and invasion of GBM cells. Western blot analysis, immunofluorescence staining, immunohistochemistry, and bioinformatics were used to gain insights into the molecular mechanisms. Preclinical therapeutic efficacy was mainly estimated by ultrasound and MRI in xenograft nude mouse models. RESULTS NF inhibited the proliferation, mobility, stemness, angiogenesis, and epithelial-to-mesenchymal transition (EMT) of GBM cells. Additionally, NF induced apoptosis and G2 cell cycle arrest. Slug expression was also decreased by NF via the AKT and STAT3 signaling pathways. Interestingly, we discovered that NF affected GBM cells partly by targeting SOX2, which may be upstream of the AKT and STAT3 pathways. Finally, NF led to significant tumor control in GBM xenograft models. CONCLUSIONS NF inhibited the progression of GBM via the SOX2-AKT/STAT3-Slug signaling pathway. SOX2-targeting with NF may offer a novel therapeutic approach for GBM treatment.
Collapse
Affiliation(s)
- Zizhuo Li
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yaodong Chen
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Tingting An
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Pengfei Liu
- Department of Magnetic Resonance, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jiyuan Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Haichao Yang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Wei Zhang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Tianxiu Dong
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Jian Jiang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yu Zhang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Maitao Jiang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiuhua Yang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|