1
|
Mouzoura P, Marazioti A, Gkartziou F, Metsiou DN, Antimisiaris SG. Potential of Liposomal FTY720 for Bone Regeneration: Proliferative, Osteoinductive, Chemoattractive, and Angiogenic Properties Compared to Free Bioactive Lipid. Int J Nanomedicine 2025; 20:239-265. [PMID: 39802384 PMCID: PMC11724662 DOI: 10.2147/ijn.s494512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses). Methods FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells. The angiogenic activity of free and liposomal FTY720 was investigated using a chick chorioallantoic membrane assay. NBD-FTY720 cellular uptake was quantitated using flow cytometry and morphologically assessed by confocal microscopy. Implicated cellular signaling mechanisms were investigated by quantifying phosphorylated MAPK and CREB proteins. Results FTY720 liposomes (~80-110 nm) with low polydispersity and ~100% loading were prepared using both methods. FTY720 demonstrated the ability to increase cell proliferation at 10-300nM doses but was cytotoxic at doses>400nM while the corresponding liposomal-FTY720 doses were non-cytotoxic, proving its reduced toxicity. In several cases (cells and doses), FTY720 liposomes demonstrated increased osteogenic differentiation of cells, proliferation, and migration compared to free FTY720, whereas both FTY720 forms demonstrated substantial angiogenic activity. Liposomal FTY720 cellular uptake was substantially higher than that of free FTY720 in some cases, a fact that may be connected to its higher bioactivity. Increased phosphorylated MAPK and CREB protein concentrations provided information about the potential cellular signaling mechanisms involved in FTY720-induced osteogenesis. Discussion The current results confirm the high potential of FTY720 bioactive lipid, especially in its liposomal form, that demonstrated substantial reduction of cytotoxicity and prolonged preservation of the lipids bioactivity (compared to the free lipid), for accelerated treatment of bone defects. Interestingly, the current studies prove the potential of FTY720, especially in its liposomal form, to promote reprogramming of L929 fibroblasts into osteoblasts, a novel finding deserving future exploitation.
Collapse
Affiliation(s)
- Panagiota Mouzoura
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
| | - Antonia Marazioti
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
- Laboratory of Basic Sciences, Department of Physiotherapy, University of the Peloponnese, Sparti, 23100, Greece
| | - Foteini Gkartziou
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
| | - Despoina-Nektaria Metsiou
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
| | - Sophia G Antimisiaris
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
- FORTH/ICE‑ΗΤ, Institute of Chemical Engineering Sciences, Platani, 26504, Greece
| |
Collapse
|
2
|
Wang YP, Di WJ, Yang S, Qin SL, Xu YF, Han PF, Hou KD. The association of growth differentiation factor 5 rs143383 gene polymorphism with osteoarthritis: a systematic review and meta-analysis. J Orthop Surg Res 2023; 18:763. [PMID: 37817264 PMCID: PMC10563324 DOI: 10.1186/s13018-023-04245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is caused by a complex set of pathophysiological factors. The genetic factors involved in the occurrence and progress of the disease have been widely discussed by scholars. It was found that growth differentiation factor 5 (GDF5) gene polymorphisms may be linked to OA susceptibility, which has been controversial and needs to be further confirmed by an updated meta-analysis. OBJECTIVES We examined the association between GDF5 rs143383 single nucleotide polymorphism (SNP) and OA susceptibility. METHODS All relevant articles that met the criteria are retrieved and included, and the search deadline is June 2022. The allele frequencies and different genotype frequencies of GDF5 rs143383 loci in each study were extracted and statistically analyzed by R4.1.3 software, and the different genetic models were analyzed based on their odds ratio (OR) and 95% confidence interval (CI). RESULTS The meta-analysis explained that GDF5 rs143383 SNP was crucial correlated with OA in all patients with OA of knee, hip and hand. The codominant gene model in the whole crowd (OR = 1.17, 95% CI 1.07-1.27, P < 0.01) enlightened that OA was vitally associated with GDF5 gene polymorphism. At the same time, we did a subgroup analysis based on ethnicity. The codominant gene model (OR = 1.31, 95% CI 1.12-1.53, P < 0.01) in Asian population, the codominant homozygote model (OR = 1.28, 95% CI 1.14-1.43), codominant heterozygote gene model (OR = 1.12, 95% CI 1.01-1.23, P = 0.02), and dominant gene model (OR = 1.19, 95% CI 1.09-1.31, P < 0.01) in Caucasian are analyzed by subgroup analysis. It means that there is a momentous relationship between the GDF5rs143383 gene polymorphism and OA, especially among Caucasians. In addition, we also discussed different types of OA separately and discover that the GDF5rs143383 gene polymorphism was relevant for knee osteoarthritis (KOA) and hand osteoarthritis, and it was more significant in the Caucasian population. But due to the high heterogeneity in hip osteoarthritis, it could not be accurately concluded. Furthermore, we also analyzed the osteoarthritis of different genders and found that the GDF5 rs143383 SNP was associated with both men and women and was still significant in the Caucasian population. CONCLUSION We found a close association between osteoarthritis and GDF5rs143383SNP in this study. From the analysis of each group, we got the same conclusion in KOA and hand OA, but which need further verification in hip OA. Considering gender, we found a close relationship between GDF5 rs143383 SNP and OA of the knee, hip and hand, both for men and women. This conclusion is more obvious in Caucasian people.
Collapse
Affiliation(s)
- Yue-Peng Wang
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, 101200, China
| | - Wen-Jia Di
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Su Yang
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Shi-Lei Qin
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, 046000, China
| | - Yun-Feng Xu
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, 046000, China
| | - Peng-Fei Han
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| | - Ke-Dong Hou
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, 101200, China.
| |
Collapse
|
3
|
Sim HJ, Cho C, Kim HE, Hong JY, Song EK, Kwon KY, Jang DG, Kim SJ, Lee HS, Lee C, Kwon T, Yang S, Park TJ. Augmented ERAD (ER-associated degradation) activity in chondrocytes is necessary for cartilage development and maintenance. SCIENCE ADVANCES 2022; 8:eabl4222. [PMID: 35061535 PMCID: PMC8782459 DOI: 10.1126/sciadv.abl4222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/29/2021] [Indexed: 05/28/2023]
Abstract
Chondrocytes secrete massive extracellular matrix (ECM) molecules that are produced, folded, and modified in the endoplasmic reticulum (ER). Thus, the ER-associated degradation (ERAD) complex-which removes misfolded and unfolded proteins to maintain proteostasis in the ER- plays an indispensable role in building and maintaining cartilage. Here, we examined the necessity of the ERAD complex in chondrocytes for cartilage formation and maintenance. We show that ERAD gene expression is exponentially increased during chondrogenesis, and disruption of ERAD function causes severe chondrodysplasia in developing embryos and loss of adult articular cartilage. ERAD complex malfunction also causes abnormal accumulation of cartilage ECM molecules and subsequent chondrodysplasia. ERAD gene expression is decreased in damaged cartilage from patients with osteoarthritis (OA), and disruption of ERAD function in articular cartilage leads to cartilage destruction in a mouse OA model.
Collapse
Affiliation(s)
- Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Chanmi Cho
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea
- CIRNO, Sungkyunkwan University, Suwon 16419, Korea
- Degenerative Inter Diseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ha Eun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Ju Yeon Hong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Keun Yeong Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Seok-Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary’s Hospital, Catholic University of Korea College of Medicine, Uijeongbu 11765, Korea
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Changwook Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea
- CIRNO, Sungkyunkwan University, Suwon 16419, Korea
- Degenerative Inter Diseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| |
Collapse
|
4
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
5
|
Zhang X, Huang N, Huang R, Wang L, Ke Q, Cai L, Wu S. Single-cell rna seq analysis identifies the biomarkers and differentiation of chondrocyte in human osteoarthritis. Am J Transl Res 2020; 12:7326-7339. [PMID: 33312370 PMCID: PMC7724342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) was recently adopted for exploring molecular programmes and lineage progression patterns of pathogenesis of important diseases. In this study, scRNA-seq was used to identify potential markers for chondrocytes in osteoarthritis (OA) and to explore the function of different types of chondrocytes in OA. METHODS Here we aimed to identify the biomarkers and differentiation of chondrocyte by Single-cell RNA seq analysis. GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to identify the function of candidate marker genes in chondrocytes. Protein-protein interaction (PPI) network was constructed to find the hub genes in 3 types of chondrocyte respectively. We also used qRT-PCR to detect the expression level of the candidate marker genes in different types of chondrocyte. RESULTS In this study, we characterized the single-cell expression profiling of 480 chondrocyte samples and found hypertrophic chondrocyte (HTC), homeostatic chondrocyte (HomC) and fibrocartilage chondrocyte (FC) respectively. The results of GO and KEGG analysis showed the candidate marker genes made specific function in these chondrocytes to regulate the development of OAs respectively. We further revealed the differential expression of top 10 marker genes in 3 types of chondrocyte. The marker genes of HTC and FC were mainly expressed in their cell subset respectively. The marker genes of HomC did not have obviously differential expression among different types of chondrocyte. Last, we predicted the key genes in each cell subset. CD44, JUN and FN1 were predicted tightly related to the proliferation and differentiation of chondrocytes in OAs and could be regarded as biomarkers to estimate the development of OA. CONCLUSION Our results provide new insights into exploring the roles of different types of chondrocyte in OA. The biomarkers of chondrocyte were also valuable for estimating OA progression.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Nianlai Huang
- Department of Clinical Medicine, Fujian Medical UniversityFuzhou 350000, Fujian, China
| | - Rongfu Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Liangming Wang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Qingfeng Ke
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| | - Liquan Cai
- Department of Clinical Medicine, Fujian Medical UniversityFuzhou 350000, Fujian, China
| | - Shiqiang Wu
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou 362000, Fujian, China
| |
Collapse
|
6
|
Wu Z, Wang B, Tang J, Bai B, Weng S, Xie Z, Shen Z, Yan D, Chen L, Zhang J, Yang L. Degradation of subchondral bone collagen in the weight-bearing area of femoral head is associated with osteoarthritis and osteonecrosis. J Orthop Surg Res 2020; 15:526. [PMID: 33176818 PMCID: PMC7659206 DOI: 10.1186/s13018-020-02065-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
Background The aim of the study was to evaluate the change of subchondral bone collagen and trabecular bone in the weight-bearing area of femoral head from patients with osteoarthritis (OA) or osteonecrosis of femoral head (ONFH), and discuss the effect of collagen degradation on OA and ONFH. Methods Femoral heads from patients with femoral neck fracture (FNF) were collected as control group. All collected samples were divided into OA group (N = 10), ONFH group (N = 10), and FNF group (N = 10). Differences of subchondral bone collagen were compared through scanning electron microscope (SEM) observation, immunohistochemistry staining, and Masson’s trichrome staining. Alteration of subchondral bone was displayed through hematoxylin and eosin (H&E) staining and gross morphology. Results SEM results showed that collagen fibers in OA and ONFH group appeared to be thinner, rougher, sparser, and more wizened. Immunohistochemistry and Masson’s trichrome staining results demonstrated that the content of collagen fibers in the OA and ONFH group was obviously less than the FNF group. H&E staining results showed that trabecular bone in OA and ONFH group appeared to be thinner and ruptured. Gross morphology results showed that the degeneration and destruction of cartilage and subchondral bone in OA and ONFH group were severer than FNF group. The characteristics mentioned above in ONFH group were more apparent than OA group. Conclusions This study revealed that degradation of collagen fibers from subchondral bone in the weight-bearing area of femoral head was associated with OA and ONFH, which may help to find new therapeutic strategies of the diseases.
Collapse
Affiliation(s)
- Zongyi Wu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Bingzhang Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Bingli Bai
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Sheji Weng
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Zhongjie Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Zijian Shen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Deyi Yan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Liang Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jingdong Zhang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|