1
|
Peng P, Xiao Y, Peng X, Chen J, Chen N. Genetic variability in stroke patients: CYP2C19 polymorphisms unraveled. BMC Med Genomics 2024; 17:109. [PMID: 38671468 PMCID: PMC11055221 DOI: 10.1186/s12920-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE To study the distribution characteristics of CYP2C19 polymorphisms in patients suffering from stroke in Han Chinese patients. METHOD PCR and DNA microarray chip technology were used to detect the CYP2C19 genotype of 549 patients with stroke, and the genotype, allele frequency and metabolic type of patients with different sexes, ages and types of infarctions and the independent risk factors for clopidogrel resistance were analyzed. RESULTS Six genotypes were detected in these 549 patients. A total of 233 (42.44%) patients had the heterozygous allele *1/*2, which was the most prevalent, followed by the homozygous wild-type allele *1/*1 (191, 34.79%). A total of 30 (5.46%) patients possessed the heterozygous allele *1/*3, and 65 (11.84%) patients had the homozygous mutant allele *2/*2. Twenty-nine (5.28%) patients had the compound heterozygous mutant allele *2/*3, and only 1 patient had the homozygous mutant allele *3/*3. The distribution of genotypes, alleles, and metabolic types did not change significantly (P > 0.05) by sex, age, or type of stroke. In addition, no independent risk factors for clopidogrel resistance were found in this analysis. CONCLUSION The distribution of CYP2C19 genotypes, allele frequencies, and metabolic types in patients with stroke in Han Chinese patients were not correlated with sex, age, or infarction type. The possibilities of hyperglycemia, hypercholesterolemia, hypertriglyceridemia, hypo-HDL-cholesterolemia, hyper-LDL-cholesterolemia and high blood pressure were not statistically associated with CYP2C19 genotypes. CYP2C19 gene polymorphism detection is recommended for patients who are available, and during treatment, the CYP2C19 genotype can be used to guide personalized precise medication use in patients with stroke.
Collapse
Affiliation(s)
- Peiyi Peng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yingxiu Xiao
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xuehong Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jianqiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Nuan Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
2
|
Li H, Fang Y, Chen Y, Lin Y, Fang Z, Lin Z, Xie H, Zhang Z. A novel AllGlo probe-quantitative PCR method for detecting single nucleotide polymorphism in CYP2C19 to evaluate the antiplatelet activity of clopidogrel. Sci Rep 2024; 14:2358. [PMID: 38286794 PMCID: PMC10825217 DOI: 10.1038/s41598-024-52540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
CYP2C19 gene has multiple single nucleotide polymorphism (SNP), which is the major determinant for clopidogrel treatment responses. Therefore, CYP2C19 SNP detection is essential for predicting clopidogrel efficacy. Currently, there is still no quick and effective method for routine detection of common CYP2C19 SNPs in clinical laboratories, which is critically needed prior to clopidogrel treatment. AllGlo™ based quantitative PCR was used to develop a novel genotyping method for CYP2C19 SNP detection, termed CyPAllGlo. The performance of CyPAllGlo was compared with that of the commonly used fluorescence in situ hybridization (FISH) method, and the data was verified by DNA sequencing. CyPallGlo was used to identify CYP2C19 polymorphisms in 363 patients with coronary heart disease. The univariate analysis was used to access the antiplatelet efficacy of clopidogrel in patients. The associations between CYP2C19 polymorphisms and clopidogrel efficacy were analyzed. Using CyPAllGlo to detect CYP2C19*2 and CYP2C19*3 alleles was highly specific and fast. The detection limit was approximately 0.07 µg/µl and 0.7 µg/µl for CYP2C19*2 and CYP2C19*3, respectively. The consistency between FISH and CyPAllGlo were 98.07% for CYP2C19*2 and 99.17% for CYP2C19*3. DNA sequencing showed that the accuracy of CyPAllGlo was 100%. The analysis time for the whole CyPAllGlo procedure was approximately 60 min. Univariate analysis showed that the anticoagulation efficacy of clopidogrel was related to patient age, CYP2C19 genotype, metabolic phenotype, and LDL level. The logistic regression analysis showed that the genotype of CYP2C19 and metabolic phenotype was the two risk factors for clopidogrel antiplatelet ineffectiveness. This novel CyPAllGlo is a rapid and accurate method for detection of CYP2C19 SNP. The specificity and consistency of CyPAllGlo are comparable with that of widely used DNA sequencing. These findings provide valuable rapid method for predicting clopidogrel efficacy, which can be quickly translated to improve personalized precision medicine for coronary heart disease treatment.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, 450052, China
| | - Yizhen Fang
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, 361009, China
| | - Yongquan Chen
- Medical Laboratory Center, Xiamen Humanity Hospital, Fujian Medical University, No. 3777, Xianyue Road, Huli District, Xiamen, 361009, Fujian, China
- Xiamen Key Laboratory for Biomarkers and Translational Medicine, Xiamen, 361009, China
| | - Yuning Lin
- Medical Laboratory Center, Xiamen Humanity Hospital, Fujian Medical University, No. 3777, Xianyue Road, Huli District, Xiamen, 361009, Fujian, China
- Xiamen Key Laboratory for Biomarkers and Translational Medicine, Xiamen, 361009, China
| | - Zanxi Fang
- Department of Medical Laboratory Center, Xiamen University Affiliated Zhongshan Hospital, Xiamen, 361004, China
| | - Zhiyuan Lin
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361001, China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, 361009, China.
| | - Zhongying Zhang
- Medical Laboratory Center, Xiamen Humanity Hospital, Fujian Medical University, No. 3777, Xianyue Road, Huli District, Xiamen, 361009, Fujian, China.
- Xiamen Key Laboratory for Biomarkers and Translational Medicine, Xiamen, 361009, China.
| |
Collapse
|
3
|
Chen L, Zheng C, Hao M, Gao P, Zhao M, Cao Y, Ma L. Association of ABCC2 polymorphism with clopidogrel response in Chinese patients undergoing percutaneous coronary intervention. Front Pharmacol 2022; 13:889473. [PMID: 36278153 PMCID: PMC9585281 DOI: 10.3389/fphar.2022.889473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Aim: In this study, we investigated the association between ABCC2 polymorphism and clopidogrel response as well as the associated hypothetical mechanism. Methods: Chinese patients (213) with coronary artery disease (CAD) who underwent percutaneous coronary intervention (PCI) and received clopidogrel were recruited. Thereafter, their ADP-induced platelet inhibition rates (PAIR%) were determined via thromboelastometry. Further, the single-nucleotide polymorphisms (SNPs) of ABCC2 were genotyped using high-resolution melting curve (HRM)-PCR, while CYP2C19*2 and *3 polymorphisms were genotyped via real-time PCR. Results: The allele frequencies of ABCC2 rs717620 were 74.88 and 25.12% for the C and T alleles, respectively. Further, ABCC2 rs717620 TT carriers exhibited significantly higher PAIR% values (72.60 ± 27.69) than both CT (61.44 ± 23.65) and CC carriers (52.72 ± 21.99) (p = 0.047 and p = 0.001, respectively), and ABCC2 rs717620 CT carriers showed significantly higher mean PAIR% values than ABCC2 rs717620 CC carriers (p = 0.011). However, the PAIR% values corresponding to ABCC2 rs2273697 and ABCC2 rs3740066 carriers were not different. Additionally, CYP2C19*2 AA carriers presented significantly lower PAIR% values than CYP2C19*2 GA (p = 0.015) and GG (p = 0.003) carriers, and CYP2C19*3 GA carriers also presented significantly lower PAIR% values than CYP2C19*3 GG carriers (p = 0.041). In patients with CYP2C19 extensive metabolizers (EM), ABCC2 rs717620 TT carriers showed significantly higher PAIR% values (89.77 ± 9.73) than CT (76.76 ± 26.00) and CC carriers (74.09 ± 25.29) (p = 0.040 and p = 0.009, respectively). In patients with CYP2C19 poor metabolizers (PM), ABCC2 rs717620 CC carriers showed significantly lower PAIR% values (51.72 ± 25.78) than CT carriers (75.37 ± 23.57) (p = 0.043). Furthermore, after adjusting for confounding factors, ABCC2 rs717620 was identified as a strong predictor of clopidogrel hyperreactivity. Conclusion: We proposed a new target, ABCC2 rs717620, in the efflux pathway that affects individual responses to clopidogrel. The TT allele of ABCC2 rs717620 was also identified as an independent risk factor for clopidogrel hyperreactivity, and CYP2C19*2 and *3 showed association with an increased risk for clopidogrel resistance. Additionally, ABCC2 rs717620 may affect individual responses to clopidogrel via post-transcriptional regulation and interaction with CYP2C19. These findings provide new insights that may guide the accurate use of clopidogrel.
Collapse
Affiliation(s)
- Lida Chen
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing, China
| | - Chao Zheng
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing, China
| | - Mengmeng Hao
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing, China
| | - Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing, China
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liang Ma, ; Yongtong Cao,
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liang Ma, ; Yongtong Cao,
| |
Collapse
|
4
|
Bor W, Gorog DA. Antithrombotic Therapy in Patients with Atrial Fibrillation and Acute Coronary Syndrome. J Clin Med 2020; 9:E2020. [PMID: 32605128 PMCID: PMC7409267 DOI: 10.3390/jcm9072020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Acute coronary syndrome and atrial fibrillation are both common and can occur in the same patient. Combination therapy with dual antiplatelet therapy and oral anticoagulation increases risk of bleeding. Where the two conditions coexist, careful consideration is needed to determine the optimal antithrombotic treatment to reduce the risks of future ischaemic events associated with both conditions. Choices can be made in intraprocedural anticoagulation, type and dosing of oral anticoagulant, duration of combination therapy, and selection of P2Y12 inhibitor including genetic testing. This review article provides an overview of the available evidence to support clinicians in finding the delicate balance between antithrombotic efficacy and bleeding risk in patients with acute coronary syndrome and atrial fibrillation.
Collapse
Affiliation(s)
- Wilbert Bor
- St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Diana A. Gorog
- Department of Medicine, National Heart & Lung Institute, Imperial College, London SW3 6LY, UK;
- Postgraduate Medical School, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|