1
|
Ball HC, Alejo AL, Samson TK, Alejo AM, Safadi FF. Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life (Basel) 2022; 12:582. [PMID: 35455072 PMCID: PMC9030470 DOI: 10.3390/life12040582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment.
Collapse
Affiliation(s)
- Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Trinity K. Samson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- GPN Therapeutics, Inc., REDI Zone, Rootstown, OH 44272, USA
| | - Amanda M. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Department of Orthopaedic Surgery, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
2
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Wu Y, Lu X, Shen B, Zeng Y. The Therapeutic Potential and Role of miRNA, lncRNA, and circRNA in Osteoarthritis. Curr Gene Ther 2020; 19:255-263. [PMID: 31333128 DOI: 10.2174/1566523219666190716092203] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. OBJECTIVE The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. METHODS The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. RESULTS AND DISCUSSION With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. CONCLUSION In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.
Collapse
Affiliation(s)
- Yuangang Wu
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Shen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yi Zeng
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
4
|
Xie F, Liu YL, Chen XY, Li Q, Zhong J, Dai BY, Shao XF, Wu GB. Role of MicroRNA, LncRNA, and Exosomes in the Progression of Osteoarthritis: A Review of Recent Literature. Orthop Surg 2020; 12:708-716. [PMID: 32436304 PMCID: PMC7307224 DOI: 10.1111/os.12690] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common clinical degenerative disease characterized by the destruction of articular cartilage, which has an increasing impact on people's lives and social economy. The pathogenesis of OA is complex and unclear, and there is no effective way to block its progress. The study of the pathogenesis of OA is the prerequisite for the early diagnosis and effective treatment of OA. To define the pathogenesis of OA, this review considers the pathological mechanism of OA that involves microRNA, lncRNA, and exosomes. More and more evidence shows that microRNA, lncRNA, and exosomes are closely related to OA. MicroRNA inhibits the target gene by binding to the 3'- untranslated region of the targets. LncRNA usually competes with microRNA to regulate the expression level of downstream genes, while exosomes, as a carrier of intercellular information transfer, transmit the biological information of mother cells to target cells, and the effect of exosomes secreted by different cells on OA are different. In this review, we emphasized that different microRNA, lncRNA, and exosomes have different regulatory effects on chondrocyte proliferation and apoptosis, extracellular matrix degradation and inflammation. Besides, we classified and analyzed these molecules according to their effects on the progress of OA. Based on the analysis of the reported literature, this review reveals some pathogenesis of OA, and emphasizes that microRNA, lncRNA, and exosomes have great potential to assist early diagnosis and effective treatment of OA.
Collapse
Affiliation(s)
- Fang Xie
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Yong-Li Liu
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Xiu-Yuan Chen
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Qian Li
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Jia Zhong
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Bin-Yu Dai
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Xian-Fang Shao
- Affiliated Changde Hospital, Hunan University of Traditional Chinese Medicine, Changde, China
| | - Guan-Bao Wu
- Department of Orthopaedics, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Feng Y, Qu L, Wang X, Liu C. LINC01133 promotes the progression of cervical cancer by sponging miR-4784 to up-regulate AHDC1. Cancer Biol Ther 2019; 20:1453-1461. [PMID: 31390932 DOI: 10.1080/15384047.2019.1647058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer, as the deadliest gynecological tumor with high risk of incidence, manifests aberrantly expressed lncRNAs in the malignant cellular processes. Long intergenic non-protein coding RNA 1133 (LINC01133) has been acknowledged to actively participate in aggressive tumor phenotypes. Our study focused on the identification of the function and corresponding mechanism of the novel molecule, LINC01133 in cervical cancer. LINC01133 expression profile was validated by digging The Cancer Genome Atlas (TCGA) database and qRT-PCR analysis. A considerably up-regulated expression of LINC01133 was unveiled. The results of CCK-8, trypan blue exclusion, EdU and transwell migration assays manifested the facilitating property of LINC01133 in cervical cancer. The epithelial-mesenchymal transition (EMT) was also exacerbated by LINCO1133. Apoptotic rate of cervical cancer cells was promoted after silencing LINCO1133. Mechanically, LINC01133 functioning as a ceRNA targeted miR-4784 to augment AHDC1 expression. Finally, LINCO1133/miR-4784 aggravated the malignant growth and aggressiveness and EMT of cervical cancer in an AHDC1-dependant way.
Collapse
Affiliation(s)
- Yan Feng
- Department of gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Luyun Qu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Xiuli Wang
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Chunyan Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| |
Collapse
|