1
|
Huang H, Tang S, Zhou Y, Cai Y. Tectorigenin inhibits inflammatory responses in murine inflammatory bowel disease and LPS-stimulated macrophages via inactivating MAPK signaling pathway. Immun Inflamm Dis 2024; 12:e1077. [PMID: 38722267 PMCID: PMC11080961 DOI: 10.1002/iid3.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Considering the antihepatitis effects of Tectorigenin (TEC), and the same adenosine mitogen-activated protein kinase (MAPK) pathway in both hepatitis and inflammatory bowel disease (IBD) models, exploring the role of TEC in IBD is contributive to develop a new treatment strategy against IBD. METHODS The IBD mouse model was constructed by feeding with dextran sodium sulfate (DSS) and injection of TEC. Afterward, the mouse body weight, colon length, and disease activity index (DAI) were tested to assess the enteritis level. Mouse intestine lesions were detected by hematoxylin and eosin staining. Murine macrophages underwent lipopolysaccharide (LPS) induction to establish an inflammation model. Cell viability was determined by cell counting kit-8 assay. Enzyme-linked immunosorbent assay was performed to measure interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were quantified via quantitative reverse transcription polymerase chain reaction. Levels of MAPK pathway-related proteins (p-P38, P38, p-Jun N-terminal kinase (JNK), JNK, signal-regulated kinase (ERK), p-ERK), COX-2 and iNOS were quantitated by Western blot. RESULTS TEC improved the inflammatory response through ameliorating weight loss, shortening colon, and increasing DAI score in IBD mouse. Expressions of intestinal inflammatory factors (IL-6, TNF-α, iNOS and COX-2) and MAPK pathway-related proteins (p-P38, p-JNK, and p-ERK) were increased both in DSS-induced mouse intestinal tissue, but TEC inhibited expressions of inflammatory factors. The same increased trend was identified in LPS-induced macrophages, but TEC improved macrophage inflammation, as evidenced by downregulation of inflammatory factors. CONCLUSION TEC mitigates IBD and LPS-induced macrophage inflammation in mice via inhibiting MAPK signaling pathway.
Collapse
Affiliation(s)
- Hong Huang
- Department of TCM and Integrated TCM and Western MedicineHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Sanhui Tang
- Department of TCM and Integrated TCM and Western MedicineHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yanghong Zhou
- Department of TCM and Integrated TCM and Western MedicineHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yi Cai
- Department of Liver and Gall SurgicalHunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| |
Collapse
|
2
|
Yanan S, Bohan L, Shuaifeng S, Wendan T, Ma Z, Wei L. Inhibition of Mogroside IIIE on isoproterenol-induced myocardial fibrosis through the TLR4/MyD88/NF-κB signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:114-120. [PMID: 36594066 PMCID: PMC9790049 DOI: 10.22038/ijbms.2022.67908.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 01/04/2023]
Abstract
Objectives To investigate the effect of mogroside IIIE (MGIIIE) on isoproterenol (ISO)-induced myocardial fibrosis and explore its possible mechanisms. Materials and Methods Forty C57BL/6 male mice (6-8 weeks) were randomly divided into a control group (n=10), model group (n=10), low MGIIIE dose group (n=10), and high MGIIIE dose group (n=10). Myocardial fibrosis was established by subcutaneous ISO injection. After 2 weeks of continuous gastric administration of MGIIIE, the cardiac structure was evaluated by echocardiography. Myocardial inflammation and fibrosis were evaluated by histology examination. Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), p-IκBα, p-NF-κB, transforming growth factor β1 (TGF-β1), and α-smooth muscle actin (α-SMA) expression were detected by western blot. Inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum were examined by ELISA. In the in vitro study, Ang II (1 μmol/l) was used to stimulate the fibroblasts, then inflammation and fibrosis index were detected. Results MGIIIE inhibited inflammation and fibrosis and down-regulated TLR4, MyD88, TGF-β1, and α-SMA expression in the myocardium. In the in vitro study, MGIIIE ameliorates the deposition of Col Ш and Col I and decreases the release of inflammatory cytokines. MGIIIE increased p-IκBα and reduced p-NF-κB expression both in vivo and in vitro. Conclusion MGIIIE plays a role in anti-myocardial fibrosis, by inhibiting TLR4/MyD88/NF-κB signaling expression, and decreasing inflammatory cytokine release. MGIIIE may represent a novel therapeutic strategy for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Shi Yanan
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Li Bohan
- Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Sun Shuaifeng
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Tian Wendan
- Heilongjiang Provincial Hospital, Harbin, PR. China, 150001
| | - Zizhe Ma
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Liu Wei
- Department of Geriatric Cardiology, Guangdong Provincial People’s Hospital. Guangzhou, PR. China, 510080,Corresponding author: Liu Wei. Department of Geriatric Cardiology, Guangdong Provincial People’s Hospital. Guangzhou, PR. China, 510080. Tel/ Fax: +86- 18904502999;
| |
Collapse
|
3
|
Chen G, Ge D, Zhu B, Shi H, Ma Q. Upregulation of matrix metalloproteinase 9 (MMP9)/tissue inhibitor of metalloproteinase 1 (TIMP1) and MMP2/TIMP2 ratios may be involved in lipopolysaccharide-induced acute lung injury. J Int Med Res 2021; 48:300060520919592. [PMID: 32339071 PMCID: PMC7219017 DOI: 10.1177/0300060520919592] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective This study aimed to examine the changes and significance of matrix metalloproteinase 9 (MMP9), MMP2, tissue inhibitor of metalloproteinase 1 (TIMP1), and TIMP2 in rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Wistar rats were randomly divided into a control group (injected with saline) and an ALI group (injected with LPS), then subdivided into four time points (2, 6, 12, and 24 hours). Serum tumor necrosis factor alpha and interleukin-6 levels were detected by ELISA to investigate the inflammatory reaction after LPS injection. The degree of ALI was determined by hematoxylin–eosin staining of lung tissue, the lung wet/dry weight ratio, and pulmonary permeability index. Changes in lung MMP and TIMP protein and mRNA levels were detected by western blotting and quantitative real-time polymerase chain reaction. Results Changes in the ratios of MMP9/TIMP1 and MMP2/TIMP2 were consistent with and strongly positively associated with the lung wet/dry weight ratio, the pulmonary permeability index, and serum tumor necrosis factor alpha and interleukin-6 levels in the ALI group. Conclusion ALI induced by LPS may be related to upregulation of MMP9/TIMP1 and MMP2/TIMP2 ratios.
Collapse
Affiliation(s)
- Guobing Chen
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dandan Ge
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Pediatric Key Laboratory of Xiamen, Xiamen, Fujian, China
| | - Bizhen Zhu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huixuan Shi
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qilin Ma
- School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Liu C, Yin Z, Feng T, Zhang M, Zhou Z, Zhou Y. An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113364. [PMID: 32916233 PMCID: PMC7480403 DOI: 10.1016/j.jep.2020.113364] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicerae japonicae flos (LJF, the dried flower bud or newly bloomed flower of Lonicera japonica Thunb.), a typical herbal medicine, targets the lung, heart and stomach meridian with the function of clearing heat and detoxication. It ameliorated inflammatory responses and protected against acute lung inflammation in animal models. Acute lung injury (ALI) is a kind of inflammatory disease in which alveolar cells are damaged. However, a network pharmacology study to thoroughly investigate the mechanisms preventing ALI has not been performed. AIM OF THE STUDY In this study, we examined the main active ingredients in LJF and the protective effects of LJF on LPS-induced ALI in rats. MATERIALS AND METHODS First, the main active ingredients of LJF were screened in the TCMSP database, and the ALI-associated targets were collected from the GeneCards database. Then, we used compound-target and target-pathway networks to uncover the preventive mechanisms of LJF. Furthermore, we assessed the preventive effects of LJF in an LPS-induced rat model with the RNA-Seq technique to validate the possible molecular mechanisms of the effects of LJF in the treatment of ALI. RESULTS The network pharmacology results identified 28 main active compounds in LJF, and eight chemical components highly related to the potential targets, which were potential active compounds in LJF. In all, 94 potential targets were recognized, including IL6, TNF, PTGS2, APP, F2, and GRM5. The pathways revealed that the possible targets of LJF involved in the regulation of the IL-17 signalling pathway. Then, in vivo experiments indicated that LJF decreased the levels of proinflammatory cytokines (TNF-, IL-1, and IL-6) in serum and bronchoalveolar lavage fluid, decreased the levels of oxidative stress factors (MDA and MPO) and increased the activities of SOD and GSH-Px in lung tissue. The RNA-Seq results revealed that 7811, 775 and 3654 differentially expressed genes (DEGs) in Ctrl (control group), ALI-LJF (Lonicerae japonicae flos group) and ALI-DXSM (dexamethasone group), respectively. KEGG pathway analysis showed that the DEGs associated with immune response and inflammation signalling pathways and the IL-17 signalling pathway were significantly enriched in LJF. Compared with those in ALI, the expression of CXCL2, CXCL1, CXCL6, NFKBIA, IFNG, IL6, IL17A, IL17F, IL17C, MMP9 and TNFAIP3, which are involved in the IL-17 signalling pathway, were significantly decreased in the LJF group according to the qRT-PCR analyses. CONCLUSIONS In view of the network pharmacology and RNA-Seq results, the study identified the main active ingredient and potential targets of LJF involved in protecting against ALI, which suggests directions for further research on LJF.
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Zhigang Yin
- College of Life Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Tingting Feng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Min Zhang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhi Zhou
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China; Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
5
|
Vollrath JT, Stoermann P, Becker N, Wutzler S, Hildebrand F, Marzi I, Relja B. Early local neutralization of CC16 in sepsis‑induced ALI following blunt chest trauma leads to delayed mortality without benefitting overall survival. Int J Mol Med 2020; 46:2207-2215. [PMID: 33125155 PMCID: PMC7595659 DOI: 10.3892/ijmm.2020.4767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Blunt thoracic trauma (TxT) is a common injury pattern in polytraumatized patients. When combined with a secondary trigger, TxT often results in acute lung injury (ALI), which negatively affects outcomes. Recent findings suggest that ALI is caused by both local and systemic inflammatory reactions. Club cell protein (CC)16 is an anti‑inflammatory peptide associated with lung injury following TxT. Recently, the anti‑inflammatory properties of endogenous CC16 in a murine model of TxT with subsequent cecal‑ligation and puncture (CLP) as the secondary hit were demonstrated by our group. The present study aimed to determine whether CC16 neutralization improves survival following 'double‑hit'‑induced ALI. For this purpose, a total of 120 C57BL/6N mice were subjected to TxT, followed by CLP after 24 h. Sham‑operated animals underwent anesthesia without the induction of TxT + CLP. CC16 neutralization was performed by providing a CC16 antibody intratracheally following TxT (early) or following CLP (late). Survival was assessed in 48 animals for 6 days after CLP. Sacrifice was performed 6 or 24 h post‑CLP to evaluate the anti‑inflammatory effect of CC16. The results revealed that CC16 neutralization enhanced pro‑inflammatory CXCL1 levels, thereby confirming the anti‑inflammatory characteristics of CC16 in this model. Early CC16 neutralization immediately following TxT significantly prolonged survival within 60 h; however, the survival rate did not change until 6 days post‑trauma. Late CC16 neutralization did not provide any survival benefits. On the whole, the present study demonstrated that neutralizing CC16 confirmed its anti‑inflammatory potential in this double‑hit ALI model. Early CC16 neutralization prolonged survival within 60 h; however, no survival benefits were observed after 6 days post‑CLP in any group.
Collapse
Affiliation(s)
- Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Philipp Stoermann
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Nils Becker
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Sebastian Wutzler
- Department of Trauma, Hand and Orthopedic Surgery, Helios Horst Schmidt Clinic, D‑65199 Wiesbaden, Germany
| | - Frank Hildebrand
- Department of Trauma Surgery, RWTH University, D‑52062 Aachen, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| |
Collapse
|
6
|
Salvia miltiorrhiza Injection Alleviates LPS-Induced Acute Lung Injury by Adjusting the Balance of MMPs/TIMPs Ratio. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9617081. [PMID: 32765635 PMCID: PMC7387992 DOI: 10.1155/2020/9617081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Salvia miltiorrhiza injection (SMI) is a classical traditional Chinese medicine, which plays an active role in the treatment of many diseases such as promoting blood circulation, removing blood stasis, reducing inflammatory reaction, and improving acute lung injury (ALI). Previous studies have shown that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in the pathophysiological process of ALI. However, the relationship between SMI and MMPs/TIMPs remains unclear. In this study, Wistar rats were randomly divided into control group (NC), Salvia miltiorrhiza group (SM), lipopolysaccharide group (LPS), and Salvia miltiorrhiza treatment group (Tsm). The four groups were subdivided into four time points (2, 6, 12, and 24 hours), and specimens were collected after animal sacrifice at each time point. Serum TNF-α and IL-6 levels were detected by ELISA. The degree of lung injury was determined by lung tissue hematoxylin-eosin staining, lung wet/dry weight (W/D) ratio, and lung permeability index. The changes in lung MMPs/TIMPs protein and mRNA were detected by Western blot and real-time quantitative PCR. The results showed that rats injected with LPS experience acute lung injury, and the ratio of MMPs/TIMPs in lung tissues increased gradually with time. In the Tsm group, the ratio of MMPs/TIMPs decreased gradually, and likewise, the balance was gradually restored, while indicators related to lung injury were gradually declined. These data suggest that SMI alleviates LPS-induced acute lung injury; this protective effect may be related to regulation of the balance of MMPs/TIMPs ratio.
Collapse
|
7
|
Gao H, Xiao D, Gao L, Li X. MicroRNA‑93 contributes to the suppression of lung inflammatory responses in LPS‑induced acute lung injury in mice via the TLR4/MyD88/NF‑κB signaling pathway. Int J Mol Med 2020; 46:561-570. [PMID: 32468034 PMCID: PMC7307825 DOI: 10.3892/ijmm.2020.4610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease with a rapid onset. The anti-inflammatory functions of microRNA-93 (miRNA/miR-93) have been described in various types of tissue injury and disease. However, the biological role of miR-93 and its molecular mechanisms underlying the initiation and progression of ALI have not yet been reported, at least to the best of our knowledge. The present study aimed to investigate the regulatory effects exerted by miR-93 in ALI. Using an in vivo murine model of ALI induced by lipopolysaccharide (LPS), miR-93 expression was found to be downregulated in the lung tissues and bronchoalveolar lavage fluid (BALF) compared with the control group. Following agomiR-93 injection, it was observed that agomiR-93 attenuated lung injury, as evidenced by decreased lung permeability, a reduced lung wet/dry weight ratio and an increased survival rate of the mice. Concomitantly, agomiR-93 significantly reduced LPS-induced the interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α levels in BALF. Of note, Toll-like receptor 4 (TLR4), an upstream regulator of the nuclear factor (NF)-κB signaling pathway, was directly suppressed by miR-93 in RAW 264.7 cells. Importantly, agomiR-93 induced a significant suppression of the TLR4/myeloid differentiation primary response 88 (MyD88)/NF-κB signaling pathway, as demonstrated by the downregulation of MyD88, and the phosphorylation of IκB-α and p65 in the lung tissues of mice with ALI. Taken together, the findings of the present study indicate that miR-93 attenutes LPS-induced lung injury by regulating the TLR4/MyD88/NF-κB signaling pathway, suggesting that miR-93 may prove to be a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|