1
|
Kagawa T, Mineda A, Nakagawa T, Shinohara A, Arakaki R, Inui H, Noguchi H, Yoshida A, Kinouchi R, Yamamoto Y, Yoshida K, Kaji T, Nishimura M, Iwasa T. New treatment strategies for uterine sarcoma using secreted frizzled‑related proteins. Exp Ther Med 2024; 27:231. [PMID: 38628655 PMCID: PMC11019650 DOI: 10.3892/etm.2024.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024] Open
Abstract
Secreted frizzled-related proteins (SFRPs) are involved in the development of various types of cancer and function by suppressing the Wnt signaling pathway. To elucidate the clinical implications of SFRPs in uterine sarcoma, SFRP expression levels and their effects on uterine leiomyosarcoma cells were examined. Immunostaining for SFRP4 was performed on uterine smooth muscle, uterine fibroid and uterine leiomyosarcoma tissues. Additionally, the effects of SFRP4 administration on cell viability, migration and adhesion were evaluated in uterine leiomyosarcoma SKN cells using the WST-1 assay (Roche Diagnostics) and the CytoSelect™ 24-well Cell Migration Assay Kit and the CytoSelect™ 48-well Cell Adhesion Assay Kit. The expression levels of SFRP4 in uterine leiomyosarcoma tissues were lower than those in normal smooth muscle and uterine fibroid tissues. In addition, SFRP4 suppressed the viability and migration, and increased the adhesion ability of uterine leiomyosarcoma cells compared with in the control group. In conclusion, SFRP4 may suppress the viability and migration, and enhance the adhesion of sarcoma cells. These results suggested that SFRP4 could be considered as a novel therapeutic target for uterine sarcoma.
Collapse
Affiliation(s)
- Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ayuka Mineda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomotaka Nakagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ayaka Shinohara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroaki Inui
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Riyo Kinouchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takashi Kaji
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
2
|
Arif M, Pandey P, Khan F. Review Deciphering the Anticancer Efficacy of Resveratrol and their Associated Mechanisms in Human Carcinoma. Endocr Metab Immune Disord Drug Targets 2024; 24:1015-1026. [PMID: 37929735 DOI: 10.2174/0118715303251351231018145903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
The scientific world has recently shown wider attention to elucidating the anticancerous potential of numerous plant-based bioactive compounds. Many research studies have suggested that consuming foods high in polyphenols, which are present in large amounts in grains, legumes, vegetables, and fruits, may delay the onset of various illnesses, including cancer. Normal cells with genetic abnormalities begin the meticulously organized path leading to cancer, which causes the cells to constantly multiply, colonize, and metastasize to other organs like the liver, lungs, colon, and brain. Resveratrol is a naturally occurring stilbene and non-flavonoid polyphenol, a phytoestrogen with antioxidant, anti-inflammatory, cardioprotective, and anticancer properties. Resveratrol makes cancer cells more susceptible to common chemotherapeutic treatments by reversing multidrug resistance in cancer cells. This is especially true when combined with clinically used medications. Several new resveratrol analogs with enhanced anticancer effectiveness, absorption, and pharmacokinetic profile have been discovered. The present emphasis of this review is the modulation of intracellular molecular targets by resveratrol in vivo and in vitro in various malignancies. This review would help future researchers develop a potent lead candidate for efficiently managing human cancers.
Collapse
Affiliation(s)
- Mohd Arif
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| |
Collapse
|
3
|
Vélez-Vargas LC, Santa-González GA, Uribe D, Henao-Castañeda IC, Pedroza-Díaz J. In Vitro and In Silico Study on the Impact of Chlorogenic Acid in Colorectal Cancer Cells: Proliferation, Apoptosis, and Interaction with β-Catenin and LRP6. Pharmaceuticals (Basel) 2023; 16:276. [PMID: 37259421 PMCID: PMC9960681 DOI: 10.3390/ph16020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer mortality rate and highly altered proteins from the Wnt/β-catenin pathway increase the scientific community's interest in finding alternatives for prevention and treatment. This study aims to determine the biological effect of chlorogenic acid (CGA) on two colorectal cancer cell lines, HT-29 and SW480, and its interactions with β-catenin and LRP6 to elucidate a possible modulatory mechanism on the Wnt/β-catenin pathway. These effects were determined by propidium iodide and DiOC6 for mitochondrial membrane permeability, MitoTracker Red for mitochondrial ROS production, DNA content for cell distribution on cell cycle phases, and molecular docking for protein-ligand interactions and binding affinity. Here, it was found that CGA at 2000 µM significantly affects cell viability and causes DNA fragmentation in SW480 cells rather than in HT-29 cells, but in both cell lines, it induces ROS production. Additionally, CGA has similar affinity and interactions for LRP6 as niclosamide but has a higher affinity for both β-catenin sites than C2 and iCRT14. These results suggest a possible modulatory role of CGA over the Wnt/β-catenin pathway in colorectal cancer.
Collapse
Affiliation(s)
- Laura Catalina Vélez-Vargas
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 050010, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| | - Diego Uribe
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| | - Isabel C. Henao-Castañeda
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 050010, Colombia
| | - Johanna Pedroza-Díaz
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| |
Collapse
|
4
|
Jang JY, Im E, Kim ND. Mechanism of Resveratrol-Induced Programmed Cell Death and New Drug Discovery against Cancer: A Review. Int J Mol Sci 2022; 23:13689. [PMID: 36430164 PMCID: PMC9697740 DOI: 10.3390/ijms232213689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes, red wine, peanuts, and apples, has been reported to exhibit a wide range of biological and pharmacological properties. In addition, resveratrol has been reported to intervene in multiple stages of carcinogenesis. It has also been known to kill several human cancer cells through programmed cell death (PCD) mechanisms such as apoptosis, autophagy, and necroptosis. However, resveratrol has limitations in its use as an anticancer agent because it is susceptible to photoisomerization owing to its unstable double bond, short half-life, and is rapidly metabolized and eliminated. Trans-(E)-resveratrol is nontoxic, and has several biological and pharmacological activities. However, little is known about the pharmacological properties of the photoisomerized cis-(Z)-resveratrol. Therefore, many studies on resveratrol derivatives and analogues that can overcome the shortcomings of resveratrol and increase its anticancer activity are underway. This review comprehensively summarizes the literature related to resveratrol-induced PCD, such as apoptosis, autophagy, necroptosis, and the development status of synthetic resveratrol derivatives and analogues as novel anticancer drugs.
Collapse
Affiliation(s)
| | | | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea
| |
Collapse
|
5
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
6
|
Huber R, Koval A, Marcourt L, Héritier M, Schnee S, Michellod E, Scapozza L, Katanaev VL, Wolfender JL, Gindro K, Ferreira Queiroz E. Chemoenzymatic Synthesis of Original Stilbene Dimers Possessing Wnt Inhibition Activity in Triple-Negative Breast Cancer Cells Using the Enzymatic Secretome of Botrytis cinerea Pers. Front Chem 2022; 10:881298. [PMID: 35518712 PMCID: PMC9062038 DOI: 10.3389/fchem.2022.881298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancer and triple-negative breast cancer (TNBC) in particular depend upon Wnt pathway overactivation. Despite this importance, no Wnt pathway-targeting drugs are currently available, which necessitates novel approaches to search for therapeutically relevant compounds targeting this oncogenic pathway. Stilbene analogs represent an under-explored field of therapeutic natural products research. In the present work, a library of complex stilbene derivatives was obtained through biotransformation of a mixture of resveratrol and pterostilbene using the enzymatic secretome of Botrytis cinerea. To improve the chemodiversity, the reactions were performed using i-PrOH, n-BuOH, i-BuOH, EtOH, or MeOH as cosolvents. Using this strategy, a series of 73 unusual derivatives was generated distributed among 6 scaffolds; 55 derivatives represent novel compounds. The structure of each compound isolated was determined by nuclear magnetic resonance and high-resolution mass spectrometry. The inhibitory activity of the isolated compounds against the oncogenic Wnt pathway was comprehensively quantified and correlated with their capacity to inhibit the growth of the cancer cells, leading to insights into structure-activity relationships of the derivatives. Finally, we have dissected mechanistic details of the stilbene derivatives activity within the pathway.
Collapse
Affiliation(s)
- Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Sylvain Schnee
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emilie Michellod
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| |
Collapse
|
7
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
9
|
Yu WK, Xu ZY, Yuan L, Mo S, Xu B, Cheng XD, Qin JJ. Targeting β-Catenin Signaling by Natural Products for Cancer Prevention and Therapy. Front Pharmacol 2020; 11:984. [PMID: 32695004 PMCID: PMC7338604 DOI: 10.3389/fphar.2020.00984] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The mutations and deregulation of Wnt signaling pathway occur commonly in human cancer and cause the aberrant activation of β-catenin and β-catenin-dependent transcription, thus contributing to cancer development and progression. Therefore, β-catenin has been demonstrated as a promising target for cancer prevention and therapy. Many natural products have been characterized as inhibitors of the β-catenin signaling through down-regulating β-catenin expression, modulating its phosphorylation, promoting its ubiquitination and proteasomal degradation, inhibiting its nuclear translocation, or other molecular mechanisms. These natural product inhibitors have shown preventive and therapeutic efficacy in various cancer models in vitro and in vivo. In the present review, we comprehensively discuss the natural product β-catenin inhibitors, their in vitro and in vivo anticancer activities, and underlying molecular mechanisms. We also discuss the current β-catenin-targeting strategies and other potential strategies that may be examined for identifying new β-catenin inhibitors as cancer preventive and therapeutic drugs.
Collapse
Affiliation(s)
- Wen-Kai Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Zhang Y, Liu M, Wang J, Huang J, Guo M, Zuo L, Xu B, Cao S, Lin X. Targeting Protein Kinase Inhibitors with Traditional Chinese Medicine. Curr Drug Targets 2019; 20:1505-1516. [DOI: 10.2174/1389450120666190802125959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Protein kinases play critical roles in the control of cell growth, proliferation, migration, and
angiogenesis, through their catalytic activity. Over the past years, numerous protein kinase inhibitors
have been identified and are being successfully used clinically. Traditional Chinese medicine (TCM)
represents a large class of bioactive substances, and some of them display anticancer activity via inhibiting
protein kinases signal pathway. Some of the TCM have been used to treat tumors clinically in
China for many years. The p38mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase,
serine/threonine-specific protein kinases (PI3K/AKT/mTOR), and extracellular signal-regulated kinases
(ERK) pathways are considered important signals in cancer cell development. In the present article,
the recent progress of TCM that exhibited significant inhibitory activity towards a range of protein
kinases is discussed. The clinical efficacy of TCM with inhibitory effects on protein kinases in
treating a tumor is also presented. The article also discussed the prospects and problems in the development
of anticancer agents with TCM.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianlin Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingyue Guo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ling Zuo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Biantiao Xu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|