1
|
Zeng ZL, Zhu Q, Zhao Z, Zu X, Liu J. Magic and mystery of microRNA-32. J Cell Mol Med 2021; 25:8588-8601. [PMID: 34405957 PMCID: PMC8435424 DOI: 10.1111/jcmm.16861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous, small (∼22 nts in length) noncoding RNA molecules that function specifically by base pairing with the mRNA of genes and regulate gene expression at the post-transcriptional level. Alterations in miR-32 expression have been found in numerous diseases and shown to play a vital role in cell proliferation, apoptosis, oncogenesis, invasion, metastasis and drug resistance. MiR-32 has been documented as an oncomiR in the majority of related studies but has been also verified as a tumour suppressor miRNA in conflicting reports. Moreover, it has a crucial role in metabolic and cardiovascular disorders. This review provides an in-depth look into the most recent finding regarding miR-32, which is involved in the expression, regulation and functions in different diseases, especially tumours. Additionally, this review outlines novel findings suggesting that miR-32 may be useful as a noninvasive biomarker and as a targeted therapeutic in several diseases.
Collapse
Affiliation(s)
- ZL Zeng
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Key Laboratory for Arteriosclerology of Hunan ProvinceDepartment of Cardiovascular DiseaseHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Qingyun Zhu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Zhibo Zhao
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Xuyu Zu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Jianghua Liu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
2
|
Iftode A, Drăghici GA, Macașoi I, Marcovici I, Coricovac DE, Dragoi R, Tischer A, Kovatsi L, Tsatsakis AM, Cretu O, Dehelean C. Exposure to cadmium and copper triggers cytotoxic effects and epigenetic changes in human colorectal carcinoma HT-29 cells. Exp Ther Med 2020; 21:100. [PMID: 33363611 PMCID: PMC7725023 DOI: 10.3892/etm.2020.9532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Recent scientific evidence suggests a link between epigenetic changes (DNA methylation) and tumorigenesis. Moreover, a potential carcinogenic mechanism of cadmium was associated with changes in DNA methylation. In this study we investigated the impact of CdCl2 and CuSO4 aqueous solutions on DNA methylation in HT-29 cells by quantifying DNA methyltransferase (DNMT1, DNMT3A and DNMT3B) mRNA expression. Furthermore, we also studied the cytotoxic and anti-migratory potential of these substances. The results showed a dose-dependent decrease of viable cell percentage following 24 h of exposure (at concentrations of 0.05; 0.2; 1; 10 and 100 µg/ml), and an inhibitory effect on HT-29 cell migration capacity. In addition, RT-qPCR results showed that cadmium acts as a hypomethylating agent by suppressing DNMT expression, whereas copper acts as a hypermethylating compound by increasing DNMT expression. These findings suggest a cytotoxic potential of both cadmium and copper on HT-29 cells and their capacity to induce epigenetic changes.
Collapse
Affiliation(s)
- Andrada Iftode
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Andrei Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Macașoi
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dorina E Coricovac
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan Dragoi
- Department of Balneology, Rehabilitation and Rheumatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alina Tischer
- Department of Surgery I, Faculty of Medicine, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Octavian Cretu
- Department of Surgery I, Faculty of Medicine, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|