1
|
Skóra B, Piechowiak T, Szychowski KA. Engagement of specific intracellular pathways in the inflammation-based reprotoxicity effect of small-size silver nanoparticles on spermatogonia and spermatocytes invitro cell models. CHEMOSPHERE 2024; 363:142897. [PMID: 39029710 DOI: 10.1016/j.chemosphere.2024.142897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Male infertility is a serious ongoing problem, whose causes have not yet been clearly identified. However, since human exposure to silver nanoparticles (AgNPs) has recently increased due to their beneficial properties, the present study aimed to determine the impact of small-size AgNPs on mouse spermatogonia (GC-1 spg) and spermatocytes [GC-2 spd(ts)] in vitro models as well as the ability of these nanostructures to induce inflammation. The results showed a significant dose- and time-dependent decrease in the metabolic activity in both cell models, which was correlated with an increase in the intracellular ROS level. Moreover, increased activity of caspase-9 and -3, together with enhanced expression of CASP3 and p(S15)-p53 proteins, was detected. Further studies indicated a decrease in ΔΨm after the AgNP-treatment, which proves induction of apoptosis with engagement of an intrinsic pathway. The PARP1 protein expression, the activity and protein expression of antioxidant enzymes, the GSH level, and the increased level of p-ERK1/2 indicate not only the engagement of DNA damage but also the occurrence of oxidative stress. The small-size AgNPs were able to induce inflammation, proved by increased protein expression of NF-κB, p-IκBα, and NLRP3, which indicate damage to spermatogonia and spermatocyte cells. Moreover, the PGC-1α/PPARγ and NRF2/Keap1 pathways were engaged in the observed effect. The spermatogonial cells were characterized by a stronger inflammation-based response to AgNPs, which may be correlated with the TNFα/TRAF2-based pathway. Summarizing, the obtained results prove that AgNPs impair the function of testis-derived cells by inducing the redox imbalance and inflammation process; therefore, these NPs should be carefully implemented in the human environment.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35-225, Rzeszów, Poland.
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, St. Ćwiklinskiej 1A, 35-601, Rzeszów, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35-225, Rzeszów, Poland
| |
Collapse
|
2
|
Lee YH, Kim M, Park HJ, Park JY, Song ES, Lee H, Ko G, Ahn S, Kwon HW, Byun Y, Kim C, Choi J, Park JT. Chemical screening identifies the anticancer properties of Polyporous parvovarius. J Cancer 2023; 14:50-60. [PMID: 36605488 PMCID: PMC9809329 DOI: 10.7150/jca.78302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023] Open
Abstract
One of the biggest obstacles in cancer treatment is the development of chemoresistance. To overcome this, attempts have been made to screen novel anticancer substances derived from natural products. The purpose of this study is to find new anticancer candidates in the mycelium culture extract of mushrooms belonging to Polyporus. Here, we used a high-throughput screening to find agents capable of inhibiting cancer cell proliferation. The culture extract of Polyporus Parvovarius mycelium in DY medium (pp-DY) was effective. pp-DY inhibited cancer cell proliferation by inducing apoptosis and S-phase arrest. The anticancer property of pp-DY was not only effective against one type of cancer, but also against another type of cancer. Compound fractionation was performed, and the active ingredient exhibiting anticancer effects in pp-DY was identified as 3,4-dihydroxybenzaldehyde (Protocatechualdehyde, PCA). PCA, like pp-DY, inhibited the proliferation of cancer cells by inducing apoptosis and S-phase arrest. Furthermore, unlike conventional anticancer drugs, PCA did not increase the proportion of the side population that plays the most important role in the development of chemoresistance. Taken together, our data revealed the novel mycelium culture extract that exhibited anticancer property, and identified active ingredients that did not activate a proportion of the side population. These novel findings may have clinical applications in the treatment of cancer, particularly chemo-resistant cancer.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Minkyeong Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Hyon Jin Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Gahyun Ko
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Soonkil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea.,Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Changmu Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea.,✉ Corresponding authors: Changmu Kim, Ph. D. Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea. Tel: +82-32-590-7344, E-mail address: ; Jaehyuk Choi, Ph.D Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea. Tel: +82-32-835-8242, E-mail address: ; Joon Tae Park, Ph.D. Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea. Tel: +82-32-835-8841, E-mail address:
| | - Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea.,✉ Corresponding authors: Changmu Kim, Ph. D. Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea. Tel: +82-32-590-7344, E-mail address: ; Jaehyuk Choi, Ph.D Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea. Tel: +82-32-835-8242, E-mail address: ; Joon Tae Park, Ph.D. Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea. Tel: +82-32-835-8841, E-mail address:
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea.,Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea.,✉ Corresponding authors: Changmu Kim, Ph. D. Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea. Tel: +82-32-590-7344, E-mail address: ; Jaehyuk Choi, Ph.D Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea. Tel: +82-32-835-8242, E-mail address: ; Joon Tae Park, Ph.D. Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea. Tel: +82-32-835-8841, E-mail address:
| |
Collapse
|
3
|
Cytotoxic activity of cholesterol oxidase produced by Streptomyces sp. AKHSS against cancerous cell lines: mechanism of action in HeLa cells. World J Microbiol Biotechnol 2021; 37:141. [PMID: 34287712 DOI: 10.1007/s11274-021-03076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Re-occurrence of cancer is the major drawback for the currently available anticancer therapies. Therefore, study of an efficient enzyme, cholesterol oxidase produced by various kinds of microbes especially obtained from unexplored marine actinobacterial species against human cancer cell lines and understanding its mechanism of action helps to identify an irreversible and potent anticancer agent. The cytotoxic potential of cholesterol oxidase produced by a marine Streptomyces sp. AKHSS against four different human cancer cell lines was demonstrated through MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Fluorescent confocal microscopy and flow cytometry based experiments were performed to understand the efficiency of the enzymatic action on HeLa cells. Further, the apoptotic related proteins were detected through western blotting. Interestingly, the enzyme exhibited potent cytotoxicity at very low concentrations (0.093-0.327 µM) against all the cells tested. Fluorescent confocal microscopy revealed the morphological variations induced by the enzyme on cancer cell lines such as the formation of lipid droplets and condensation of nuclei. The enzyme treated cell-free extracts of HeLa cells analyzed through gas chromatography mass spectrometry showed the depletion of membrane cholesterol and the presence of substituted enzyme oxidized product, cholest-4-ene-3-one. The enzyme had induced significant inhibitory effects on the cell viability such as cell cycle arrest (G1 phase), apoptosis and rise of reactive oxygen species as evident through flow cytometry. Besides, hyperpolarization of mitochondrial membrane, reduced rates of phosphorylation of pAkt and the expression of apoptotic death markers like Fas, Fas L, caspases (8 and 3) and PARP-1 were recorded in the enzyme treated HeLa cells. Thus, cholesterol oxidase purified from a marine Streptomyces sp. AKHSS exhibits potent cytotoxicity at very low concentrations against human cancer cell lines. All the ex vivo experiments portrayed the substantial inhibitory effect of the enzyme on HeLa cells suggesting that cholesterol oxidase of Streptomyces sp. AKHSS could be a prominent cancer chemotherapeutic agent.
Collapse
|
4
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Wang HH, Chen Y, Changchien CY, Chang HH, Lu PJ, Mariadas H, Cheng YC, Wu ST. Pharmaceutical Evaluation of Honokiol and Magnolol on Apoptosis and Migration Inhibition in Human Bladder Cancer Cells. Front Pharmacol 2020; 11:549338. [PMID: 33240083 PMCID: PMC7677562 DOI: 10.3389/fphar.2020.549338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Among herbal medicines, magnolia bark extract, particularly its components honokiol (Hono) and magnolol (Mag), has been widely documented to have antineoplastic properties. The present study aimed to evaluate the synergism of Hono and Mag in bladder cancer therapy both in vitro and in vivo. Treatment with Mag alone at concentrations up to 80 μM failed to have an antiproliferative effect. In contrast, the combination of Hono and Mag at 40 μM decreased viability, caused cell cycle arrest and enhanced the proportion of Annexin V/7AAD-positive cells. Moreover, Mag with Hono at 40 μM induced caspase 3-dependent apoptosis and autophagy. Neither Hono nor Mag alone had an anti-migratory effect on bladder cancer cells. In contrast, Hono and Mag at 20 μM inhibited the motility of TSGH8301 and T24 cells in wound-healing and Transwell assays. The above phenomena were further confirmed by decreased phosphorylated focal adhesion kinase (p-FAK), p-paxillin, integrin β1, and integrin β3 protein levels. In a nude mouse xenograft model, Mag/Hono administration preferentially retarded T24 tumor progression, which was consistent with the results of cellular experiments. Current findings suggest Hono and Mag treatment as a potential anticancer therapy for both low- and high-grade urothelial carcinoma.
Collapse
Affiliation(s)
- Hisao-Hsien Wang
- Division of Urology, Department of Surgery, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Ying Changchien
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Jyun Lu
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Heidi Mariadas
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Planning, Medical Affairs Bureau Ministry of National Defense, Taipei, Taiwan
| |
Collapse
|
6
|
Yan Y, Xu J, Mao G. Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism. Med Sci Monit 2020; 26:e923962. [PMID: 32862190 PMCID: PMC7480089 DOI: 10.12659/msm.923962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The purpose of our study was to determine the effects and mechanisms of honokiol on human epidermal growth factor receptor 2 (HER2)-positive gastric cancer cells by in vitro study. MATERIAL AND METHODS We measured HER2 expression in different gastric cancer cell lines by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) assay. Cell proliferation, apoptosis, and cell cycle were evaluated by cell-counting kit 8 and flow cytometry assays. The invading cell numbers and wound-healing rates were measured by transwell and wound-healing assays. Phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), P21, and matrix metalloproteinase (MMP)-9 proteins and messenger ribonucleic acid (mRNA) expression were measured by WB and RT-qPCR assay. HER2 protein expression was evaluated by cellular immunofluorescence. RESULTS Honokiol suppressed cell proliferation via increasing cell apoptosis, invasion, and migration with dose dependence. By WB and RT-qPCR assays, compared with the control group, PI3K, AKT, P21, and MMP-9 proteins and mRNA expression were significantly different (P<0.05). By cellular immunofluorescence, HER2 protein expression was significantly depressed in honokiol-treated groups compared with control groups (P<0.05). CONCLUSIONS Honokiol has suppressive effects on HER2-positive gastric cancer cell biological activities via regulation of HER2/PI3K/AKT pathways in vitro.
Collapse
Affiliation(s)
- Yidan Yan
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China (mainland)
| | - Jianmin Xu
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China (mainland)
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| |
Collapse
|
7
|
Sabarwal A, Chakraborty S, Mahanta S, Banerjee S, Balan M, Pal S. A Novel Combination Treatment with Honokiol and Rapamycin Effectively Restricts c-Met-Induced Growth of Renal Cancer Cells, and also Inhibits the Expression of Tumor Cell PD-L1 Involved in Immune Escape. Cancers (Basel) 2020; 12:cancers12071782. [PMID: 32635337 PMCID: PMC7408055 DOI: 10.3390/cancers12071782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The mTOR inhibitor Rapamycin has tumor inhibitory properties; and it is also used as an immunosuppressive agent after organ transplantation. However, prolonged Rapamycin treatment re-activates Akt and can promote cancer growth. Honokiol is a natural compound with both anti-tumorigenic and anti-inflammatory properties. Here, we assessed the anti-tumor effects of Rapamycin and Honokiol combination in renal cell carcinoma (RCC). Receptor tyrosine kinase c-Met-mediated signaling plays a major role in RCC growth. We observed that compared with Rapamycin alone, Rapamycin + Honokiol combination can effectively down-regulate c-Met-induced Akt phosphorylation in renal cancer cells; and it markedly inhibited Ras activation and cell proliferation and promoted G1 phase cell cycle arrest. The combination treatment significantly induced ROS generation and cancer cell apoptosis even when c-Met is activated. Importantly, Honokiol, but not Rapamycin, decreased c-Met-induced expression of the co-inhibitory molecule PD-L1, implied in the immune escape of renal cancer cells. In mouse renal cancer cells and Balb/c splenocytes co-culture assay, Rapamycin + Honokiol markedly potentiated immune-cell-mediated killing of cancer cells, possibly through the down-regulation of PD-L1. Together, Honokiol can effectively overcome the limitation of Rapamycin treatment alone; and the combination treatment can markedly restrict the growth of RCC, with particular importance to post-transplantation renal cancer.
Collapse
Affiliation(s)
- Akash Sabarwal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Simran Mahanta
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Selina Banerjee
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Soumitro Pal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-919-2989
| |
Collapse
|
8
|
Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl) 2020; 98:651-657. [PMID: 32313986 PMCID: PMC7220878 DOI: 10.1007/s00109-020-01905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species (ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In normal healthy cells, the "allosteric ATP inhibition of COX" decreases the oxygen uptake of mitochondria at high ATP/ADP ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This dephosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place. The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.
| |
Collapse
|
9
|
Zang H, Qian G, Arbiser J, Owonikoko TK, Ramalingam SS, Fan S, Sun SY. Overcoming acquired resistance of EGFR-mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib, with the natural product honokiol. Mol Oncol 2020; 14:882-895. [PMID: 32003107 PMCID: PMC7138398 DOI: 10.1002/1878-0261.12645] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
The development of acquired resistance to osimertinib (Osim) (AZD9291 or TAGRISSOTM), an FDA‐approved third‐generation epidermal growth factor receptor (EGFR) inhibitor for the treatment of EGFR‐mutant nonsmall cell lung cancer (NSCLC), limits the long‐term benefits for patients. Thus, effective treatment options are urgently needed. To this end, we explored whether honokiol (HNK), a natural product with potential antitumor activity, may be used to overcome Osim resistance. The combination of HNK and Osim synergistically decreased the survival of several Osim ‐resistant cell lines with enhanced effects on inhibiting cell colony formation and growth and on inducing apoptosis. This combination also showed greater growth suppression of Osim‐resistant xenograft tumors including those with 19del, T790M, and C797S triple mutations in nude mice. Mechanistically, the augmented induction of apoptosis by the combination is largely due to enhanced Mcl‐1 reduction through facilitating its degradation. A synthetic HNK derivative exerted similar effects with greater efficacy. Our findings warrant further study of HNK and its derivatives in overcoming Osim resistance in the clinic.
Collapse
Affiliation(s)
- Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Guoqing Qian
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Jack Arbiser
- Department of Dermatology, Emory University School of Medicine and Winship Cancer Institute, Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|