1
|
Wu H, Zheng B. miR-195-5p inhibits cisplatin resistance in lung adenocarcinoma by regulating DNA damage via targeting E2F7. J Biochem Mol Toxicol 2024; 38:e70015. [PMID: 39415701 DOI: 10.1002/jbt.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Lung adenocarcinoma (LUAD) emerges as one of the most lethal malignant tumors worldwide. Platinum-based combination chemotherapy remains one of the main methods for patients with advanced LUAD. Due to the resistance, the effect of this chemotherapy was not satisfactory. Therefore, studying the mechanism of cisplatin (DDP) resistance is essential for promoting the effect of this therapeutic strategy. Therefore, this work sought to probe the impact of E2F Transcription Factor 7 (E2F7) on LUAD resistance and the molecular regulatory mechanism. The mRNA expression level of the target gene E2F7 in LUAD was predicted by bioinformatics analysis, and regulatory miRNA upstream of the target gene was identified. The mRNA and protein expression of E2F7 in LUAD cells was detected through quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot, respectively. The expression of miR-195-5p in LUAD cells was measured via qRT-PCR. E2F7 high and low expression groups underwent enrichment analysis by utilizing Gene Set Enrichment Analysis software. The targeting relationship of miR-195-5p and E2F7 was validated by conducting a dual-luciferase reporter assay. The cell viability was tested through cell counting kit-8. The cell cycle was examined by flow cytometry. DNA damage level was determined via Comet assay and Western blot assay. The findings indicated that the mRNA and protein levels of E2F7 were high in LUAD. MiR-195-5p was the regulatory miRNA upstream of E2F7, and lowly expressed in LUAD. The cell experiments suggested that E2F7 advanced the DDP resistance of LUAD cells by repressing DNA damage. Finally, the rescue assay manifested that miR-195-5p overexpression could abate inhibition of E2F7 overexpression on the DNA damage and the DDP sensitivity of LUAD cells. MiR-195-5p raised the DDP sensitivity of LUAD cells by advancing the DNA damage in LUAD cells via inhibition of E2F7.
Collapse
Affiliation(s)
- Huanghui Wu
- Internal Medicine Department of Oncology, Jinjiang Municipal Hospital, Jinjiang, China
| | - Biaolong Zheng
- Internal Medicine Department of Oncology, Jinjiang Municipal Hospital, Jinjiang, China
| |
Collapse
|
2
|
Zhang T, Yuan B, Yu S. The Application of microRNAs in Papillary Thyroid Cancer: A Bibliometric and Visualized Analysis. Int J Gen Med 2024; 17:4681-4699. [PMID: 39429957 PMCID: PMC11490214 DOI: 10.2147/ijgm.s487239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Thyroid cancer is the most common malignant endocrine tumor, with papillary thyroid carcinoma (PTC) being the most prevalent type, accounting for 85% of thyroid cancer cases. Here, we conducted a bibliometric analysis of the literature in the field of microRNAs in PTC research to demonstrate current trends and research hotspots, and present a visual map of past and emerging trends. Methods We searched the Web of Scientific Core Collection (WoSCC) database for publications from 1999 to 2023 centered on this field. Next, we employed visualization tools such as VOSviewer, CiteSpace, and Microsoft Excel 2019 to present co-occurrence and co-citation analyses, trends, hotspots, and visual representations of contributions from authors, institutions, journals, and countries/regions. Results The bibliometric analysis encompassed the period from 1999 to 2023, with 994 papers from 54 countries/regions. The country with the most publications and highest total citations was the People's Republic of China, but the United States held the highest average citation rate. Among the top ten productive institutions, the Ohio State University (Ohio State Univ) was the most prominent contributor to this field. The JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM (J Clin Endocrinol Metab) ranked first in terms of citation counts and average citations among the top ten productive journals. In terms of keywords, "circular RNAs", "promotes", and "progression" have become prominent research areas. Conclusion This study elucidates current trends, hotspots, and emerging frontiers in miRNA research within PTC, and provides new insights and guidance for future identification of new PTC biomarkers and clinical trials.
Collapse
Affiliation(s)
- Tinghua Zhang
- Department of Clinical Laboratory, the Second People’s Hospital of Huaihua City, Huaihua, Hunan, People’s Republic of China
| | - Bo Yuan
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Guangdong, Shenzhen, People’s Republic of China
| | - Shaofu Yu
- Department of Clinical Pharmacy, the Second People’s Hospital of Huaihua, Huaihua, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Jiang B, Yan B, Yang H, Geng H, Li P. Transcription Factor E2F7 Hampers the Killing Effect of NK Cells against Colorectal Cancer Cells via Activating RAD18 Transcription. J Microbiol Biotechnol 2024; 34:920-929. [PMID: 38073330 PMCID: PMC11091666 DOI: 10.4014/jmb.2308.08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 04/30/2024]
Abstract
As a pivotal defensive line against multitudinous malignant tumors, natural killer (NK) cells exist in the tumor microenvironment (TME). RAD18 E3 Ubiquitin Protein Ligase (RAD18) has been reported to foster the malignant progression of multiple cancers, but its effect on NK function has not been mined. Here, the study was designed to mine the mechanism by which RAD18 regulates the killing effect of NK cells on colorectal cancer (CRC) cells. Expression of E2F Transcription Factor 7 (E2F7) and RAD18 in CRC tissues, their correlation, binding sites, and RAD18 enrichment pathway were analyzed by bioinformatics. Expression of E2F7 and RAD18 in cells was assayed by qRT-PCR and western blot. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay verified the regulatory relationship between E2F7 and RAD18. CCK-8 assay was utilized to assay cell viability, colony formation assay to detect cell proliferation, lactate dehydrogenase (LDH) test to assay NK cell cytotoxicity, ELISA to assay levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and immunofluorescence to detect expression of toxic molecules perforin and granzyme B. High expression of RAD18 and E2F7 was found in CRC tissues and cells. Silencing RAD18 could hamper the proliferation of CRC cells, foster viability and cytotoxicity of NK cells, and increase the secretion of GM-CSF, TNF-α, IFN-γ as well as the expression of perforin and granzyme B. Additionally, ChIP and dual-luciferase reporter assay ascertained the binding relationship between RAD18 promoter region and E2F7. E2F7 could activate the transcription of RAD18, and silencing RAD18 reversed the inhibitory effect of E2F7 overexpression on NK cell killing. This work clarified the inhibitory effect of the E2F7/RAD18 axis on NK cell killing in CRC, and proffered a new direction for immunotherapy of CRC in targeted immune microenvironment.
Collapse
Affiliation(s)
- Bingdong Jiang
- Department of Oncology, Union Jiangbei Hospital Huazhong University of Science and Technology, Wuhan 430100, P.R. China
| | - Binghua Yan
- Department of Radiation Oncology, Huai'an Hospital of Huai'an City, Huai'an City, 223001, P.R. China
| | - Hengjin Yang
- Department of Radiation Oncology, Huai'an Hospital of Huai'an City, Huai'an City, 223001, P.R. China
| | - He Geng
- Department of Radiation Oncology, Huai'an Hospital of Huai'an City, Huai'an City, 223001, P.R. China
| | - Peng Li
- Department of Radiation Oncology, Huai'an Hospital of Huai'an City, Huai'an City, 223001, P.R. China
| |
Collapse
|
4
|
Fu L, Li Z, Wu Y, Zhu T, Ma Z, Dong L, Ding J, Zhang C, Yu G. Hsa-miR-195-5p Inhibits Autophagy and Gemcitabine Resistance of Lung Adenocarcinoma Cells via E2F7/CEP55. Biochem Genet 2023:10.1007/s10528-023-10330-y. [PMID: 36658310 DOI: 10.1007/s10528-023-10330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment outcomes in patients. We designed this study to reveal influences of hsa-miR-195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. The expression data of LUAD-related mRNAs were downloaded from TCGA-LUAD database for differential expression analysis. The bioinformatics databases (hTFtarget, starBase and TargetScan) were used to predict the upstream and downstream regulatory molecules of E2F7. Then the binding relationships between E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein levels of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the half-maximal inhibitory concentration (IC50) and cell proliferation ability of LUAD cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apoptosis/autophagy markers and LC3 aggregation were detected by western blot and immunofluorescence, respectively. Finally, the mouse transplantation model was constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less expressed. The ChIP or dual-luciferase assays demonstrated the binding relationships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3'-UTR of E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stimulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-195-5p overexpression. In vivo experiments identified that hsa-miR-195-5p/E2F7/CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may be a novel target for LUAD.
Collapse
Affiliation(s)
- Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Jianyi Ding
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
5
|
Zhou P, Xiao L, Xu X. Identification of E2F transcription factor 7 as a novel potential biomarker for oral squamous cell carcinoma. Head Face Med 2021; 17:7. [PMID: 33637098 PMCID: PMC7908640 DOI: 10.1186/s13005-021-00258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/05/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND As a tumor-accelerating transcriptional factor, E2F transcription factor 7 (E2F7) was up-regulated in many forms of cancers. Nevertheless, little has been reported about the impacts of E2F7 on oral squamous cell carcinoma (OSCC). Here, we aimed to probe whether E2F7 had influences on OSCC and its potential mechanism. METHODS The expression of E2F7 in OSCC tissues was analyzed using the data acquired from TCGA and ONCOMINE databases. E2F7 prognostic value in OSCC patients was analyzed utilizing TCGA database. The expression of E2F7 in OSCC cell lines was detected by qRT-PCR. Gain-and loss-function of E2F7 assays in TCA-83 and CAL27 cells were performed respectively to inquire the function of E2F7. Western blotting was applied to test the alternations of EMT-related markers. RESULTS In OSCC tissues, E2F7 was highly expressed. Besides, high expression of E2F7 predicted worse prognosis in OSCC patients. Moreover, E2F7 was over-expressed in TCA-83, HSC-4 and CAL27 (all OSCC cell lines) cells relative to that in HNOK (a normal cell line) cells. Gain-and loss-function assays displayed that deficiency of E2F7 suppresses CAL27 cell growth, migration, invasion and E2F7 high-expression resulted in inverse outcomes in TCA-83 cells. Finally, we found that silencing of E2F7 facilitated E-cadherin protein expression level and reduced N-cadherin, Vimentin and Snail protein levels in CAL27 cells, whilst E2F7 high-expression exhibited the opposite effects in TCA-83 cells. CONCLUSIONS These outcomes indicated that E2F7 performs a carcinogenic role in OSCC, which provides a theoretical basis for the therapeutic strategies of OSCC.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Stomatology, Jining No.1 People's Hospital, Jining, 272000, Shandong, China
| | - Lei Xiao
- Department of Stomatology, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Xiaonan Xu
- Department of Stomatology, Jining No.1 People's Hospital, Jining, 272000, Shandong, China.
| |
Collapse
|
6
|
MicroRNA in Papillary Thyroid Carcinoma: A Systematic Review from 2018 to June 2020. Cancers (Basel) 2020; 12:cancers12113118. [PMID: 33113852 PMCID: PMC7694051 DOI: 10.3390/cancers12113118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The most common form of endocrine cancer - papillary thyroid carcinoma, has an increasing incidence. Although this disease usually has an indolent behavior, there are cases when it can evolve more aggressively. It has been known for some time that it is possible to use microRNAs for the diagnosis, prognosis and even treatment monitoring of papillary thyroid cancer. The purpose of this study is to summarize the latest information provided by publications regarding the involvement of microRNAs in papillary thyroid cancer, underling the new clinical perspectives offered by these publications. Abstract The involvement of micro-ribonucleic acid (microRNAs) in metabolic pathways such as regulation, signal transduction, cell maintenance, and differentiation make them possible biomarkers and therapeutic targets. The purpose of this review is to summarize the information published in the last two and a half years about the involvement of microRNAs in papillary thyroid carcinoma (PTC). Another goal is to understand the perspective offered by the new findings. Main microRNA features such as origin, regulation, targeted genes, and metabolic pathways will be presented in this paper. We interrogated the PubMed database using several keywords: “microRNA” + “thyroid” + “papillary” + “carcinoma”. After applying search filters and inclusion criteria, a selection of 137 articles published between January 2018–June 2020 was made. Data regarding microRNA, metabolic pathways, gene/protein, and study utility were selected and included in the table and later discussed regarding the matter at hand. We found that most microRNAs regularly expressed in the normal thyroid gland are downregulated in PTC, indicating an important tumor-suppressor action by those microRNAs. Moreover, we showed that one gene can be targeted by several microRNAs and have nominally described these interactions. We have revealed which microRNAs can target several genes at once.
Collapse
|
7
|
Xu C, Qi X. MiR-10b inhibits migration and invasion of pancreatic ductal adenocarcinoma via regulating E2F7. J Clin Lab Anal 2020; 34:e23442. [PMID: 32592206 PMCID: PMC7595905 DOI: 10.1002/jcla.23442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Abnormal microRNAs (miRNAs) expression is closely related to the development and poor prognosis of pancreatic ductal adenocarcinoma (PDAC). We aimed to elucidate the invasive mechanism and clinical significance of miR-10b in PDAC. METHODS The RNA sequence data of pancreatic cancer were extracted from the TCGA database. R packages were performed to analyze the differential expression of RNAs. TargetScan, picTar, and miRanda were used to predict the target gene of miRNA. The expression level of the selected candidate was tested by western blot and RT-PCR in PDAC cells and tissues. Scrape and Transwell assays were determined the effect of candidate molecules on cell migration and invasion. The gain of function and loss of function was achieved by co-culture with mimics and vector. Luciferase reporters were generated based on the psiCHECK2 vector. The relative luciferase activity was measured with the Dual-Luciferase Reporter Assay System and Infinate M200 PRO microplate reader. RESULTS Based on the TCGA data and bioinformatics analysis, we obtained seven differentially expressed miRNAs. Both TCGA data and our center clinical date indicated that miR-10b was contributed to the poor survival of PDAC. Based on the target gene prediction database, we found that E2F7 was a target mRNA of miR-10b. In subsequent experiments in molecular biology, miR-10b expression was downregulated in PDAC cells and tissues, while E2F7 was upregulated. Scrape and Transwell assay indicated that miR-10b could inhibit the invasion and migration of PDAC. MiR-10b was confirmed to be by the E2F7 targeting site by dual-luciferase report. Moreover, rescue experiments prove that miR-10b could inhibit the invasion and migration of PDAC cells by regulating E2F7 expression. CONCLUSION Our results suggest that miR-10b could inhibit the progression of PDAC by regulating E2F7 expression and acts as an independent prognostic risk factor for PDAC.
Collapse
Affiliation(s)
- Cui Xu
- General Surgery DepartmentShengJing Hospital of China Medical UniversityShenyangChina
| | - Xiangxiu Qi
- General Surgery DepartmentShengJing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
8
|
Liu X, Hu C. Novel Potential Therapeutic Target for E2F1 and Prognostic Factors of E2F1/2/3/5/7/8 in Human Gastric Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:824-838. [PMID: 32953933 PMCID: PMC7479313 DOI: 10.1016/j.omtm.2020.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
E2F transcription factors (E2Fs) were found to be related with cell activities and disease progression among a variety of different tumors, including regulating cell division and cell proliferation. In the analysis, it aimed to focus on transcriptional and survival information of E2Fs in gastric cancer (GC) from Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, Database for Annotation, Visualization and Integrated Discovery (DAVID), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Oncomine databases. It was found that the expression of E2F1/2/3/5/7/8 in GC tissues was obviously higher than the normal. Of interest, none of the E2Fs was related with pathological stages. Nevertheless, high expression of E2F2/3/5/7/8 was related with better survival data, except E2F6 regarding shorter first-progression (FP) survival. High expression levels of E2F2/5/7/8 have significant correlations with overall survival (OS) in patients with intestinal and diffuse GC, and this prognostic value is not affected by gender. Oppositely, the lower level of E2F1/4 illustrated superior survival data. Moreover, increased expression of E2F1 in GC tissues might play an important role in the development of GC. Collectively, E2F1 could be a potential therapeutic target for patients with GC. E2F1/2/3/5/7/8 might be original prognostic predictors of GC.
Collapse
Affiliation(s)
- Xuhong Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
García-Martínez A, López-Muñoz B, Fajardo C, Cámara R, Lamas C, Silva-Ortega S, Aranda I, Picó A. Increased E2F1 mRNA and miR-17-5p Expression Is Correlated to Invasiveness and Proliferation of Pituitary Neuroendocrine Tumours. Diagnostics (Basel) 2020; 10:diagnostics10040227. [PMID: 32316225 PMCID: PMC7235816 DOI: 10.3390/diagnostics10040227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
miR-17-5p and E2F1 have been described as deregulated in cancer, but they have scarcely been studied in pituitary neuroendocrine tumours (PitNETs). This study evaluates the relationship of E2F1 and miR-17-5p with the invasiveness and proliferation of PitNETs. In this cross-sectional descriptive study, we evaluated the expression of E2F1, MYC, and miR-17-5p by quantitative real time PCR analysis in 60 PitNETs: 29 gonadotroph (GT), 15 functioning somatotroph (ST), and 16 corticotroph (CT) tumours, of which 8 were silent (sCT). The clinical data were collected from the Spanish Molecular Register of Pituitary Adenomas (REMAH) database. We defined invasiveness according to the Knosp classification and proliferation according to a molecular expression of Ki-67 ≥ 2.59. E2F1 was more expressed in invasive than in non-invasive tumours in the whole series (p = 0.004) and in STs (p = 0.01). In addition, it was overexpressed in the silent subtypes (GTs and sCTs; all macroadenomas) and normoexpressed in the functioning ones (fCTs and STs; some microadenomas). miR-17-5p was more expressed in proliferative than in non-proliferative tumours (p = 0.041) in the whole series but not by subtypes. Conclusions: Our study suggests that in PitNETs, E2F1 could be a good biomarker of invasiveness, and miR-17-5p of proliferation, helping the clinical management of these tumours.
Collapse
Affiliation(s)
- Araceli García-Martínez
- Research Laboratory, Hospital General Universitario de Alicante-Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
| | - Beatriz López-Muñoz
- Department of Endocrinology & Nutrition, Hospital General Universitario de Alicante -ISABIAL, 03010 Alicante, Spain;
| | - Carmen Fajardo
- Department of Endocrinology and Nutrition, Hospital La Ribera, Alzira, 46600 Valencia, Spain;
| | - Rosa Cámara
- Department of Endocrinology & Nutrition, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Cristina Lamas
- Department of Endocrinology & Nutrition, Hospital General Universitario de Albacete, 02006 Albacete, Spain;
| | - Sandra Silva-Ortega
- Department of Pathology, Hospital General Universitario de Alicante -ISABIAL, 03010 Alicante, Spain; (S.S.-O.); (I.A.)
| | - Ignacio Aranda
- Department of Pathology, Hospital General Universitario de Alicante -ISABIAL, 03010 Alicante, Spain; (S.S.-O.); (I.A.)
| | - Antonio Picó
- Department of Endocrinology & Nutrition, Hospital General Universitario de Alicante, Miguel Hernández University, 03010 Alicante, Spain
- Correspondence:
| |
Collapse
|
10
|
Wu C, Ma L, Wei H, Nie F, Ning J, Jiang T. MiR-1256 inhibits cell proliferation and cell cycle progression in papillary thyroid cancer by targeting 5-hydroxy tryptamine receptor 3A. Hum Cell 2020; 33:630-640. [PMID: 32130678 DOI: 10.1007/s13577-020-00325-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Aberrant expression of miR-1256 has been reported to be closely associated with the development and progression of tumors, including colon cancer and lung cancer. However, study of its expression pattern and functional role in papillary thyroid cancer (PTC) is rare. Using quantitative real time PCR analysis, we found miR-1256 was significantly down-regulated in PTC tissues and cell lines. The correlation of miR-1256 expression with clinicopathological features was statistically analyzed. The results showed miR-1256 expression was significantly correlated with tumor size (p = 0.0124) and TNM stage (p = 0.0032). Restoring miR-1256 expression significantly inhibited proliferation and cell cycle progression of PTC cells demonstrated by CCK-8 and flow cytometry assays. Luciferase reporter assay and biotin-avidin pull-down assay showed miR-1256 can directly target 5-hydroxytryptamine receptor 3A (HTR3A) in PTC cells. The expression of miR-1256 was inversely correlated with HTR3A expression in PTC tissues. Knockdown of HTR3A imitated the suppressive effects of miR-1256 in PTC cells. Ectopic expression of HTR3A can antagonize the effects of miR-1256 on PTC cells. Furthermore, the suppressive effects of miR-1256 on the expression of PCNA, CDK4, Cyclin D1, and p21 were partially reversed by HTR3A overexpression in PTC cells. In summary, our data suggested that miR-1256 could suppress PTC cellular function by targeting HTR3A, which might be a potential therapeutic target for patients with PTC.
Collapse
Affiliation(s)
- Chaowen Wu
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, No. 187 Guanlan Avenue, Longhua District, Shenzhen, 518110, China
| | - Liyuan Ma
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Hongfa Wei
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, No. 187 Guanlan Avenue, Longhua District, Shenzhen, 518110, China
| | - Furong Nie
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, No. 187 Guanlan Avenue, Longhua District, Shenzhen, 518110, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, No. 187 Guanlan Avenue, Longhua District, Shenzhen, 518110, China.
| | - Tao Jiang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, No. 804 South Shengli Road, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Wang X, Zhang H, Jiao K, Zhao C, Liu H, Meng Q, Wang Z, Feng C, Li Y. Effect of miR-205 on proliferation and migration of thyroid cancer cells by targeting CCNB2 and the mechanism. Oncol Lett 2020; 19:2568-2574. [PMID: 32194761 PMCID: PMC7039153 DOI: 10.3892/ol.2020.11275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023] Open
Abstract
This study explored the target of miR-205 and the effect of miR-205 on the proliferation and migration regulating its target in thyroid cancer cells (TC). Twenty-five pairs of TC and adjacent tissues were collected after surgical resection. Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expression of miR-205 in TC tissues and cells (SW579, B-CPAP, TPC-1, WRO). SW579 cells were transfected with miR-205 mimic, and SW579 cells with overexpression of miR-205 were constructed. The effects of miR-205 overexpression on the proliferation and migration of SW579 cells were observed by cell counting kit-8 (CCK-8) and Transwell assays, respectively. Luciferase reporter assay was further used to look for the target of miR-205 and to study the mechanism of miR-205 in the proliferation and migration of TC cells. Compared with normal tissues and cells, the expression of miR-205 was significantly reduced in TC tissues (t=3.47, P=0.031) and cells (t=5.41, P=0.016). Overexpression of miR-205 inhibited the proliferation (t=4.12, P=0.035) and migration (t=4.47, P=0.027) of SW579 cells. Luciferase reporter assays found that CCNB2 was a target gene of miR-205 (t=4.63, P=0.024), qRT-PCR and western blot assays confirmed there was negatively correlation between CCNB2 and miR-205 (t=3.55, P=0.029; t=2.86, P=0.043). CCNB2 overexpression reversed the inhibition of miR-205 on the proliferation (t=3.70, P=0.031) and migration (t=4.12, P=0.022) of SW579 cells. In conclusion, miR-205 inhibits the proliferation and migration of TC cells by targeting CCNB2, which may be a potential target of TC therapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Haomin Zhang
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Kai Jiao
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chunyang Zhao
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hailong Liu
- Department of Oncological Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qinghong Meng
- Department of Obstetrics and Gynecology, Qiqihar Second Hospital, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhao Wang
- Department of Cardiology, Qiqihar First Hospital, Qiqihar, Heilongjiang 161005, P.R. China
| | - Chunling Feng
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yuanchun Li
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|