1
|
Liu Y, Liu H, Shao Q, Shi H, Cheng F, Wang X. Majie Cataplasm Alleviates Asthma by Regulating Th1/Th2/Treg/Th17 Balance. Int Arch Allergy Immunol 2024; 185:900-909. [PMID: 38749400 DOI: 10.1159/000538597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION T cells play a critical role in inflammatory diseases. The aim of the present study was to investigate the effects of Majie cataplasm (MJC) on asthma and to propose a possible mechanism involved in this process. METHODS Airway inflammation, infiltration of inflammatory cells, levels of interleukin (IL)-4, IL-10, IL-17, and interferon (IFN)-γ, levels of Th2, Treg, Th17, and Th1 cells, and the expressions of IL-4, IL-10, IL-17, IFN-γ, GATA binding protein 3 (GATA-3), Foxp3, RAR-related orphan receptor gamma (RORγt), and T-bet were detected. RESULT MJC treatment reduced lung airway resistance and inflammatory infiltration in lung tissues. MJC treatment also reduced the numbers of eosinophils and neutrophils in the blood and bronchoalveolar lavage fluid (BALF). The levels of IL-4 and IL-17 in the blood, BALF, and lungs were suppressed by MJC, and IFN-γ and IL-10 were increased. Furthermore, MJC suppressed the percentage of Th2 and Th17 and increased the percentage of Th1 and Treg in spleen cells. In addition, MJC can inhibit asthma by increasing expressions of IFN-γ, IL-10, T-bet, and Foxp3, as well as decreasing expressions of IL-4, IL-17, GATA-3, and RORγt. CONCLUSION MJC may improve airway hyperresponsiveness and inflammation by regulating Th1/Th2/Treg/Th17 balance in ovalbumin-induced rats. And MJC may be a new source of anti-asthma drugs.
Collapse
Affiliation(s)
- Yuanjun Liu
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Liu
- Disease-Syndrome Research Center, China Academy of Chinese Medical Sciences Institute of Basic Theory for Chinese Medicine, Beijing, China,
| | - Qi Shao
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Hanfen Shi
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Gouda NA, Alshammari SO, Abourehab MAS, Alshammari QA, Elkamhawy A. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology 2023; 31:2857-2883. [PMID: 37950803 DOI: 10.1007/s10787-023-01366-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.
Collapse
Affiliation(s)
- Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea.
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, Karimi A. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res 2023; 37:3780-3808. [PMID: 37405908 DOI: 10.1002/ptr.7917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Sepsis and septic shock are still one of the most important medical challenges. Sepsis is an extreme and uncontrolled response of the innate immune system to invading pathogenesis. Resveratrol (3,5,4'-trihydroxytrans-stilbene), is a phenolic and non-flavonoid compound naturally produced by some plants and fruits. The object of the current study is to systematically review the impacts of resveratrol and its mechanisms of function in the management of sepsis and its related complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (PROSPERO: CRD42021289357). We searched Embase, Web of Science, Google Scholar, Science Direct, PubMed, ProQuest, and Scopus databases up to January 2023 by using the relevant keywords. Study criteria were met by 72 out of 1415 articles screened. The results of this systematic review depict that resveratrol can reduces the complications of sepsis by affecting inflammatory pathways, oxidative stress, and modulating immune responses. Future human randomized clinical trials are necessary due to the promising therapeutic effects of resveratrol on sepsis complications and the lack of clinical trials in this regard.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Dashti
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Su B, Li R, Song F, Liu M, Sun X. S14G-Humanin ameliorates ovalbumin-induced airway inflammation in asthma mediated by inhibition of toll-like receptor 4 (TLR4) expression and the nuclear factor κ-B (NF-κB)/early growth response protein-1 (Egr-1) pathway. Aging (Albany NY) 2023; 15:6822-6833. [PMID: 37451839 PMCID: PMC10415557 DOI: 10.18632/aging.204874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Asthma is a chronic inflammatory disease with a high morbidity rate in children and significantly impacts their healthy growth. It is reported that Th2 cell-mediated airway inflammation and activated oxidative stress are involved in the pathogenesis of asthma. S14G-humanin (HNG) is a derivative of Humanin with higher activity. The present study proposes to explore the potential treating property of HNG on asthma. An asthma model was constructed in mice using ovalbumin (OVA), the mice were treated with 2.5 mg/kg and 5 mg/kg HNG for 16 days. Dramatically increased lung weight index, elevated number of monocytes, eosinophils, and neutrophils, promoted production of Th2 cytokines including interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13), and severe histological pathology were observed in OVA-challenged mice, all of which were extremely alleviated by 2.5 mg/kg and 5 mg/kg HNG. Furthermore, the increased malondialdehyde (MDA) level and declined superoxide dismutase (SOD) activity in OVA-challenged mice were abolished by 2.5 mg/kg and 5 mg/kg HNG. Lastly, the upregulated TLR4, p-NF-κB p65, and early growth response 1 (Egr-1) in lung tissues of OVA-challenged mice were pronouncedly downregulated by 2.5 mg/kg and 5 mg/kg HNG. Collectively, our data suggested that HNG ameliorated airway inflammation in asthma partially due to NF-κB and Egr-1-mediated responses.
Collapse
Affiliation(s)
- Bo Su
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Ran Li
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Fuxing Song
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Min Liu
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Xianjun Sun
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| |
Collapse
|
5
|
Zhai Y, Zheng P, Sun B, Li J, Wang B. Allergen-specific immunotherapy with Alutard SQ improves allergic inflammation in house-dust mites-induced allergic asthma rats through inactivation of the HMGB1/TLR4/NF-κB pathway. J Thorac Dis 2023; 15:77-89. [PMID: 36794148 PMCID: PMC9922602 DOI: 10.21037/jtd-22-715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
Background Allergen-specific immunotherapy (AIT) is the only available safe, effective, and long-term treatment for allergic airway diseases, including allergic asthma. However, the potential molecular mechanism of AIT in ameliorating airway inflammation remains unknown. Methods Rats were sensitized and challenged with house dust mite (HDM) and administered with Alutard SQ or/and high mobility group box 1 (HMGB1) inhibitor, ammonium glycyrrhizinate (AMGZ) or HMGB1 lentivirus. The total and differential cell counts in rat bronchoalveolar lavage fluid (BALF) were detected. Hematoxylin and eosin staining (H&E) was performed to examine the pathological lesions in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was performed to assess the expression of inflammatory factors in lungs, BALF, and serum. Quantitative real-time PCR (qRT-PCR) was used to measure the levels of inflammatory factors in the lungs. Western blot assay was used to evaluate the expression of HMGB1, Τoll-like receptor 4 (TLR4), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the lungs. Results Consequently, AIT with Alutard SQ attenuated airway inflammation, the total and differential cells in BALF, and expression of Th (T helper)2 related cytokines and transforming growth factor beta 1 (TGF-β1). The regimen also upregulated Th-1-related cytokine expression by inhibiting the HMGB1/TLR4/NF-κB pathway in HDM-induced asthmatic rats. Furthermore, AMGZ, a HMGB1 antagonist, amplified the functions of AIT with Alutard SQ in the asthma rat model. Nevertheless, overexpression of HMGB1 reversed the functions of AIT with Alutard SQ in the asthma rat model. Conclusions In summary, this work demonstrates the role of AIT with Alutard SQ, which inhibits the HMGB1/TLR4/NF-κB signaling pathway in allergic asthma management.
Collapse
Affiliation(s)
- Yingying Zhai
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China;,Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Harwansh RK, Yadav P, Deshmukh R. Current Insight into Novel Delivery Approaches of Resveratrol for Improving Therapeutic Efficacy and Bioavailability with its Clinical Updates. Curr Pharm Des 2023; 29:2921-2939. [PMID: 38053352 DOI: 10.2174/0113816128282713231129094715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin, and belongs to the stilbene family. RSV has several therapeutic activities such as cardioprotective, anticancer, and antioxidant. Apart from its therapeutic benefits, its pharmacological uses are limited due to low solubility, poor bioavailability, and short biological halflife. A researcher continuously focuses on overcoming the limitations of RSV through nanotechnology platforms to get the optimum health benefits. In this context, nanocarriers are pioneering to overcome these drawbacks. Nanocarriers possess high drug loading capacity, thermal stability, low production cost, longer shelflife, etc. Fortunately, scientists were proficient in delivering resveratrol-based nanocarriers in the present scenario. Nanocarriers can deliver drugs to the target sites without compromising the bioavailability. Thus, this review highlights how the latest nanocarrier systems overcome the shortcomings of RSV, which will be good for improving therapeutic efficacy and bioavailability. Moreover, recent updates on resveratrol-based novel formulations and their clinical trials have been addressed to manage several health-related problems.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Paras Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
7
|
Meng J, Zou Y, Hou L, He L, Liu Y, Cao M, Wang C, Du J. MiR-140-3p Ameliorates The Inflammatory Response of Airway Smooth Muscle Cells by Targeting HMGB1 to Regulate The JAK2/STAT3 Signaling Pathway. CELL JOURNAL 2022; 24:673-680. [PMID: 36377217 PMCID: PMC9663964 DOI: 10.22074/cellj.2022.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The growth and migration of airway smooth muscle cells (ASMCs) are dysregulated in asthma. MicroRNAs (miRNAs) are associated with the pathogenesis of many diseases including asthma. Instead, the function of miR-140- 3pin ASMCs' dysregulation in asthma remains inconclusive. This study aimed to explore the role and mechanism of miR-140-3p in ASMCs' dysregulation. MATERIALS AND METHODS In this experimental study, ASMCs were stimulated with platelet-derived growth factor (PDGF)- BB to construct an asthma cell model in vitro. MiR-140-3p expression level in the plasma of 50 asthmatic patients and 50 healthy volunteers was measured with quantitative real-time polymerase chain reaction (qRT-PCR). Besides, the enzyme-linked immunosorbent assay (ELISA) was applied to detect the contents of interleukin (IL) -1β, IL-6, and tumor necrosis factor-α (TNF-α) in the cell culture supernatant of ASMCs. Additionally, CCK-8 and transwell assays were adopted to probe the multiplication and migration of ASMCs. In addition, the western blot was employed to examine HMGB1, JAK2, and STAT3 protein expressions in ASMCs after miR-140-3p and HMGB1 were selectively regulated. RESULTS miR-140-3p expression was declined in asthmatic patients' plasma and ASMCs stimulated by PDGF-BB. Upregulating miR-140-3p suppressed the viability and migration of the cells and alleviated the inflammatory response while inhibiting miR-140-3p showed opposite effects. Additionally, HMGB1 was testified as the target of miR-140-3p. HMGB1 overexpression could reverse the impact of miR-140-3p upregulation on the inflammatory response of ASMCs stimulated by PDGF-BB. MiR-140-3p could repress the activation of JAK2/STAT3 via suppressing HMGB1. CONCLUSION In ASMCs, miR-140-3p can inhibit the JAK2/STAT3 signaling pathway by targeting HMGB1, thus ameliorating airway inflammation and remodeling in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jun Meng
- Maternity School, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yingxia Zou
- Children’s Health Clinic, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Li Hou
- Department of Gynecology and Obstetrics, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Limin He
- Department of Respiratory Medicine, Penglai Second People’s Hospital, Penglai, Shandong Province, China
| | - Yuanjuan Liu
- Department of Respiratory Medicine, Penglai Second People’s Hospital, Penglai, Shandong Province, China,Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Menghan Cao
- Department of Respiratory Medicine, Penglai Second People’s Hospital, Penglai, Shandong Province, China
| | - Chunjie Wang
- Department of Gynecology and Obstetrics, Yuhuangding Hospital, Yantai, Shandong Province, China,Department of Gynecology and ObstetricsYuhuangding HospitalYantaiShandong ProvinceChina
Children’s Health ClinicYuhuangding HospitalYantaiShandong ProvinceChina
Emails:,
| | - Junying Du
- Children’s Health Clinic, Yuhuangding Hospital, Yantai, Shandong Province, China,Department of Gynecology and ObstetricsYuhuangding HospitalYantaiShandong ProvinceChina
Children’s Health ClinicYuhuangding HospitalYantaiShandong ProvinceChina
Emails:,
| |
Collapse
|
8
|
Zhou BW, Liu HM, Jia XH. The Role and Mechanisms of Traditional Chinese Medicine for Airway Inflammation and Remodeling in Asthma: Overview and Progress. Front Pharmacol 2022; 13:917256. [PMID: 35910345 PMCID: PMC9335520 DOI: 10.3389/fphar.2022.917256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma as an individual disease has blighted human health for thousands of years and is still a vital global health challenge at present. Though getting much progress in the utilization of antibiotics, mucolytics, and especially the combination of inhaled corticosteroids (ICS) and long-acting β-agonists (LABA), we are confused about the management of asthmatic airway inflammation and remodeling, which directly threatens the quality of life for chronic patients. The blind addition of ICS will not benefit the remission of cough, wheeze, or sputum, but to increase the risk of side effects. Thus, it is necessary to explore an effective therapy to modulate asthmatic inflammation and airway remodeling. Traditional Chinese Medicine (TCM) has justified its anti-asthma effect in clinical practice but its underlying mechanism and specific role in asthma are still unknown. Some animal studies demonstrated that the classic formula, direct exacts, and natural compounds isolated from TCM could significantly alleviate airway structural alterations and exhibit the anti-inflammatory effects. By investigating these findings and data, we will discuss the possible pathomechanism underlined airway inflammation and remodeling in asthma and the unique role of TCM in the treatment of asthma through regulating different signaling pathways.
Collapse
Affiliation(s)
- Bo-wen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-man Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin-hua Jia
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xin-hua Jia,
| |
Collapse
|
9
|
PM2.5 Exposure and Asthma Development: The Key Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3618806. [PMID: 35419163 PMCID: PMC9001082 DOI: 10.1155/2022/3618806] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Oxidative stress is defined as the imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant defense system, leading to cellular damage. Asthma is a common chronic inflammatory airway disease. The presence of asthma tends to increase the production of reactive oxygen species (ROS), and the antioxidant system in the lungs is insufficient to mitigate it. Therefore, asthma can lead to an exacerbation of airway hyperresponsiveness and airway inflammation. PM2.5 exposure increases ROS levels. Meanwhile, the accumulation of ROS will further enhance the oxidative stress response, resulting in DNA, protein, lipid, and other cellular and molecular damage, leading to respiratory diseases. An in-depth study on the relationship between oxidative stress and PM2.5-related asthma is helpful to understand the pathogenesis and progression of the disease and provides a new direction for the treatment of the disease. This paper reviews the research progress of oxidative stress in PM2.5-induced asthma as well as highlights the therapeutic potentials of antioxidant approaches in treatment of asthma.
Collapse
|
10
|
Shen Y, Jiang A, Chen R, Gao X, Song G, Lu H. MicroRNA-885-3p alleviates bronchial epithelial cell injury induced by lipopolysaccharide via toll-like receptor 4. Bioengineered 2022; 13:5305-5317. [PMID: 35156897 PMCID: PMC8974227 DOI: 10.1080/21655979.2022.2032939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Airway inflammation is one of the typical pathological characteristics of asthma. MicroRNAs (miRNAs) play important roles in regulating inflammation. Nevertheless, miRNA-885-3p (miR-885-3p)’s role in asthmatic inflammation and the underlying mechanism need to be explained. In this work, miR-885-3p expression and toll-like receptor 4 (TLR4) expression in asthma patients’ plasma and lipopolysaccharide (LPS)-treated 16HBE cells were detected through quantitative real-time PCR. The interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in 16HBE cell supernatant were examined via enzyme-linked immunosorbent assay. Cell counting kit-8 (CCK-8) assay and flow cytometry were employed to examine 16HBE cell viability and apoptosis, respectively. Western blotting was performed to examine the expression of TLR4, cleaved caspase-3, B-cell lymphoma-2 (Bcl-2), nuclear factor-kappa B (NF-κB) p65, Bcl-2-related X protein (Bax), phosphorylated (p)-NF-κB p65 and myeloid differentiation primitive-response protein 88 (MyD88) in 16HBE cells. Furthermore, the targeted relationship between TLR4 and miR-885-3p in 16HBE cells was determined through dual-luciferase reporter gene assay. Compared with healthy volunteers, miR-885-3p expression in acute asthma patients’ plasma was significantly downregulated. In 16HBE cells, the stimulation of LPS reduced miR-885-3p expression. MiR-885-3p overexpression reduced LPS-stimulated 16HBE cell injury by enhancing cell viability, and suppressing the levels of inflammatory factors and apoptosis. Furthermore, TLR4 was identified as miR-885-3p’s target gene. TLR4 overexpression weakened the impacts of miR-885-3p on LPS-stimulated cell injury and NF-κB-MyD88 signaling. In conclusion, miR-885-3p can reduce LPS-induced 16HBE cell damage, via targeting TLR4 to suppress the NF-κB-MyD88 pathway.
Collapse
Affiliation(s)
- Yahui Shen
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Aigui Jiang
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Rong Chen
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Xiaoyan Gao
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Guixian Song
- Department of Cardiology, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Huiyu Lu
- Department of Respiratory and Critical Care Medicine, No. 5 Affiliated Hospital of Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| |
Collapse
|
11
|
Alharris E, Mohammed A, Alghetaa H, Zhou J, Nagarkatti M, Nagarkatti P. The Ability of Resveratrol to Attenuate Ovalbumin-Mediated Allergic Asthma Is Associated With Changes in Microbiota Involving the Gut-Lung Axis, Enhanced Barrier Function and Decreased Inflammation in the Lungs. Front Immunol 2022; 13:805770. [PMID: 35265071 PMCID: PMC8898895 DOI: 10.3389/fimmu.2022.805770] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic respiratory disease highly prevalent worldwide. Recent studies have suggested a role for microbiome-associated gut-lung axis in asthma development. In the current study, we investigated if Resveratrol (RES), a plant-based polyphenol, can attenuate ovalbumin (OVA)-induced murine allergic asthma, and if so, the role of microbiome in the gut-lung axis in this process. We found that RES attenuated allergic asthma with significant improvements in pulmonary functions in OVA-exposed mice when tested using plethysmography for frequency (F), mean volume (MV), specific airway resistance (sRaw), and delay time(dT). RES treatment also suppressed inflammatory cytokines in the lungs. RES modulated lung microbiota and caused an abundance of Akkermansia muciniphila accompanied by a reduction of LPS biosynthesis in OVA-treated mice. Furthermore, RES also altered gut microbiota and induced enrichment of Bacteroides acidifaciens significantly in the colon accompanied by an increase in butyric acid concentration in the colonic contents from OVA-treated mice. Additionally, RES caused significant increases in tight junction proteins and decreased mucin (Muc5ac) in the pulmonary epithelium of OVA-treated mice. Our results demonstrated that RES may attenuate asthma by inducing beneficial microbiota in the gut-lung axis and through the promotion of normal barrier functions of the lung.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
12
|
Shukur W, Alyaqubi K, Dosh R, Al-Ameri A, Al-Aubaidy H, Al-Maliki R, Aridhee A, Al-Fatlawi R, Hadi N. Association of Toll-like receptors 4 (TLR-4) gene expression and polymorphisms in patients with severe asthma. J Med Life 2021; 14:544-548. [PMID: 34621380 PMCID: PMC8485369 DOI: 10.25122/jml-2021-0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Innate immunity plays a central role in the pathogenesis of severe asthma, and it is closely linked to elevated IgE and Toll-like receptor 4 (TLR-4) levels. However, there is a scarcity of information about the association of the TLR-4 receptor polymorphism in the pathogenesis of severe asthma. This study highlights the level of gene expression of different alleles in asthmatic patients compared to healthy control individuals. This was a randomized control trial, which included 150 patients with asthma (with high serum levels of IgE) with a matching 150 healthy control individuals. Participants had a series of blood tests to measure various immune parameters: interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), intercellular adhesion molecule-1 (ICAM1) and detect allele type and gene expression of the TLR-4 gene. Patients with asthma had significantly higher levels of IL-8 when compared to the healthy control participants. In addition, in the rs91 genotyping, there were significant differences in the levels of IL-8 and TNF between CC and TT genotyping. While in rs90 TLR-4, TNF levels were significantly higher in AA vs. AG and GG genotypes among the asthmatic patients when compared to the control group. The results showed that in TLR-4, rs4986791 were significantly associated with asthma risk. Polymorphisms in TLRs play essential roles in asthma.
Collapse
Affiliation(s)
- Wasan Shukur
- Department of Medical Microbiology, University of Kufa, Kufa, Iraq
| | - Kifah Alyaqubi
- Department of Middle Euphrates, Cancer Research Unit, University of Kufa, Kufa, Iraq
| | - Rasha Dosh
- Department of Anatomy and Histology, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Ali Al-Ameri
- Department of Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Hayder Al-Aubaidy
- MD Anderson Cancer Center, Orlando, Florida, United States of America
| | | | - Ali Aridhee
- Department of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Rawaa Al-Fatlawi
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, University of Kufa, Kufa, Iraq
| | - Najah Hadi
- Department of Pharmacology and Therapeutics, University of Kufa, Kufa, Iraq
| |
Collapse
|
13
|
Resveratrol Can Attenuate Astrocyte Activation to Treat Spinal Cord Injury by Inhibiting Inflammatory Responses. Mol Neurobiol 2021; 58:5799-5813. [PMID: 34410605 PMCID: PMC8374881 DOI: 10.1007/s12035-021-02509-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Several preclinical and clinical studies have attempted to elucidate the pathophysiological mechanism associated with spinal cord injury. However, investigations have been unable to define the precise related mechanisms, and this has led to the lack of effective therapeutic agents for the condition. Neuroinflammation is one of the predominant processes that hinder spinal cord injury recovery. Resveratrol is a compound that has several biological features, such as antioxidation, antibacterial, and antiinflammation. Herein, we reviewed preclinical and clinical studies to delineate the role of toll-like receptors, nod-like receptors, and astrocytes in neuroinflammation. In particular, the alteration of astrocytes in SCI causes glial scar formation that impedes spinal cord injury recovery. Therefore, to improve injury recovery would be to prevent the occurrence of this process. Resveratrol is safe and effective in the significant modulation of neuroinflammatory factors, particularly those mediated by astrocytes. Thus, its potential ability to enhance the injury recovery process and ameliorate spinal cord injury.
Collapse
|
14
|
Glaucocalyxin A Attenuates Allergic Responses by Inhibiting Mast Cell Degranulation through p38MAPK/NrF2/HO-1 and HMGB1/TLR4/NF- κB Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6644751. [PMID: 34007295 PMCID: PMC8110394 DOI: 10.1155/2021/6644751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
Glaucocalyxin A (GLA) has various pharmacological effects like antioxidation, immune regulation, and antiatherosclerosis. Here, in this study, the effect and mechanism of GLA on mast cell degranulation were studied. The results of the anti-DNP IgE-mediated passive cutaneous anaphylaxis (PCA) showed that GLA dramatically inhibited PCA in vivo, as evidenced by reduced Evans blue extravasation and decreased ear thickness. In addition, GLA significantly reduced the release of histamine and β-hexosaminidase, calcium influx, cytokine (IL-4, TNF-α, IL-1β, IL-13, and IL-8) production in the RBL-2H3 (rat basophilic leukemia cells), and RPMCs (peritoneal mast cells) in vitro. Moreover, we further investigated the regulatory mechanism of GLA on antigen-induced mast cells by Western blot, which showed that GLA inhibited FcεRI-mediated signal transduction and invalidated the phosphorylation of Syk, Fyn, Lyn, Gab2, and PLC-γ1. In addition, GLA inhibited the recombinant mouse high mobility group protein B1- (HMGB1-) induced mast cell degranulation through limiting nuclear translocation of NF-κBp65. Treatment of mast cells with siRNA-HMGB1 significantly inhibited HMGB1 levels, as well as MyD88 and TLR4, decreased intracellular calcium levels, and suppressed the release of β-hexosaminidase. Meanwhile, GLA increased NrF2 and HO-1 levels by activating p38MAPK phosphorylation. Consequently, these data suggest that GLA regulates the NrF2/HO-1 signaling pathway through p38MAPK phosphorylation and inhibits HMGB1/TLR4/NF-κB signaling pathway to reduce mast cell degranulation and allergic inflammation. Our findings could be used as a promising therapeutic drug against allergic inflammatory disease.
Collapse
|
15
|
Shih CP, Kuo CY, Lin YY, Lin YC, Chen HK, Wang H, Chen HC, Wang CH. Inhibition of Cochlear HMGB1 Expression Attenuates Oxidative Stress and Inflammation in an Experimental Murine Model of Noise-Induced Hearing Loss. Cells 2021; 10:810. [PMID: 33916471 PMCID: PMC8066810 DOI: 10.3390/cells10040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is a common inner ear disease but has complex pathological mechanisms, one of which is increased oxidative stress in the cochlea. The high-mobility group box 1 (HMGB1) protein acts as an inflammatory mediator and shows different activities with redox modifications linked to the generation of reactive oxygen species (ROS). We aimed to investigate whether manipulation of cochlear HMGB1 during noise exposure could prevent noise-induced oxidative stress and hearing loss. Sixty CBA/CaJ mice were divided into two groups. An intraperitoneal injection of anti-HMGB1 antibodies was administered to the experimental group; the control group was injected with saline. Thirty minutes later, all mice were subjected to white noise exposure. Subsequent cochlear damage, including auditory threshold shifts, hair cell loss, expression of cochlear HMGB1, and free radical activity, was then evaluated. The levels of HMGB1 and 4-hydroxynonenal (4-HNE), as respective markers of reactive nitrogen species (RNS) and ROS formation, showed slight increases on post-exposure day 1 and achieved their highest levels on post-exposure day 4. After noise exposure, the antibody-treated mice showed markedly less ROS formation and lower expression of NADPH oxidase 4 (NOX4), nitrotyrosine, inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) than the saline-treated control mice. A significant amelioration was also observed in the threshold shifts of the auditory brainstem response and the loss of outer hair cells in the antibody-treated versus the saline-treated mice. Our results suggest that inhibition of HMGB1 by neutralization with anti-HMGB1 antibodies prior to noise exposure effectively attenuated oxidative stress and subsequent inflammation. This procedure could therefore have potential as a therapy for NIHL.
Collapse
Affiliation(s)
- Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Chun Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
- Taichung Armed Forces General Hospital, Taichung 41168, Taiwan
| | - Hao Wang
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Taichung Armed Forces General Hospital, Taichung 41168, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
16
|
Bi J, Lin Y, Sun Y, Zhang M, Chen Q, Miu X, Tang L, Liu J, Zhu L, Ni Z, Wang X. Investigation of the Active Ingredients and Mechanism of Polygonum cuspidatum in Asthma Based on Network Pharmacology and Experimental Verification. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1075-1089. [PMID: 33727796 PMCID: PMC7955765 DOI: 10.2147/dddt.s275228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Background Polygonum cuspidatum is a Chinese medicine commonly used to treat phlegm-heat asthma. However, its anti-asthmatic active ingredients and mechanism are still unknown. The aim of this study was to predict the active ingredients and pathways of Polygonum cuspidatum and to further explore the potential molecular mechanism in asthma by using network pharmacology. Methods The active ingredients and their targets related to Polygonum cuspidatum were seeked out with the TCM systematic pharmacology analysis platform (TCMSP), and the ingredient-target network was constructed. The GeneCards, DrugBank and OMIM databases were used to collect and screen asthma targets, and then the drug-target-disease interaction network was constructed with Cytoscape software. A target protein-protein interaction (PPI) network was constructed using the STRING database to screen key targets. Finally, GO and KEGG analyses were used to identify biological processes and signaling pathways. The anti-asthmatic effects of Polygonum cuspidatum and its active ingredients were tested in vitro for regulating airway smooth muscle (ASM) cells proliferation and MUC5AC expression, two main symptoms of asthma, by using Real-time PCR, Western blotting, CCK-8 assays and annexin V-FITC staining. Results Twelve active ingredients in Polygonum cuspidatum and 479 related target proteins were screened in the relevant databases. Among these target proteins, 191 genes had been found to be differentially expressed in asthma. PPI network analysis and KEGG pathway enrichment analysis predicted that the Polygonum cuspidatum could regulate the AKT, MAPK and apoptosis signaling pathways. Consistently, further in vitro experiments demonstrated that Polygonum cuspidatum and resveratrol (one active ingredient of Polygonum cuspidatum) were shown to inhibit ASM cells proliferation and promoted apoptosis of ASM cells. Furthermore, Polygonum cuspidatum and resveratrol inhibited PDGF-induced AKT/mTOR activation in ASM cells. In addition, Polygonum cuspidatum decreased H2O2 induced MUC5AC overexpression in airway epithelial NCI-H292 cells. Conclusion Polygonum cuspidatum could alleviate the symptoms of asthma including ASM cells proliferation and MUC5AC expression through the mechanisms predicted by network pharmacology, which provides a basis for further understanding of Polygonum cuspidatum in the treatment of asthma.
Collapse
Affiliation(s)
- Junjie Bi
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Yuhua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Yipeng Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Qingge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Xiayi Miu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Lingling Tang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Linyun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Zhenhua Ni
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| |
Collapse
|
17
|
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021; 26:molecules26010229. [PMID: 33466247 PMCID: PMC7796143 DOI: 10.3390/molecules26010229] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,4',5-trihy- droxystilbene), a natural phytoalexin polyphenol, exhibits anti-oxidant, anti-inflammatory, and anti-carcinogenic properties. This phytoalexin is well-absorbed and rapidly and extensively metabolized in the body. Inflammation is an adaptive response, which could be triggered by various danger signals, such as invasion by microorganisms or tissue injury. In this review, the anti-inflammatory activity and the mechanism of resveratrol modulates the inflammatory response are examined. Multiple experimental studies that illustrate regulatory mechanisms and the immunomodulatory function of resveratrol both in vivo and in vitro. The data acquired from those studies are discussed.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
- Correspondence: (D.X.); (J.H.)
| | - Arowolo Muhammed
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Juying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Liang Chen
- Huaihua Institute of Agricultural Sciences, No.140 Yingfeng East Road, Hecheng District, Huaihua 418000, China;
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
- Correspondence: (D.X.); (J.H.)
| |
Collapse
|
18
|
Anti-allergic and anti-inflammatory effects of resveratrol via inhibiting TXNIP-oxidative stress pathway in a mouse model of allergic rhinitis. World Allergy Organ J 2020; 13:100473. [PMID: 33133334 PMCID: PMC7586246 DOI: 10.1016/j.waojou.2020.100473] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023] Open
Abstract
Background Allergic rhinitis (AR) is a type I hypersensitivity mediated by IgE in the nose. Thioredoxin-interacting protein (TXNIP) plays a pivotal role in the process of producing reactive oxygen species (ROS). Resveratrol is a TXNIP inhibitor. Nonetheless, its role and mechanism in AR are still undetermined. The present study aimed to explore the effect and mechanism of resveratrol on an ovalbumin (OVA) induced mouse model of AR. Methods AR murine model was established using OVA and administrated intranasally with resveratrol or N-acetylcysteine (NAC). Hematoxylin and eosin (HE) stain was used for evaluating eosinophils. Immunohistochemistry (IHC) staining and real-time PCR were employed to evaluate immunolabeling and mRNA expression of TXNIP in nasal mucosas of mice. Malondialdehyde (MDA) level and superoxide dismutase (SOD) activity in nasal tissue homogenates were measured using MDA and SOD Assay Kit. Concentrations of OVA-specific IgE and histamines in serum, and OVA-specific IgE, PGD2, LTC4, ECP, IL-4, IL-5, IL-6, IL-33 and TNF-α in nasal lavage fluid (NLF) were assayed by ELISA. In vitro studies, western blotting, real-time PCR, ELISA, ROS detecting dye DCFH-DA, MDA, and SOD Assay Kit were performed to evaluate the effects and mechanisms of OVA, resveratrol or NAC on spleen mononuclear cells. Results We found significant alternations of sneezing, nasal rubbing, inflammatory cytokines, eosinophil numbers, TXNIP, MDA, and SOD levels in resveratrol or NAC treated mice compared with untreated AR mice. In cultured spleen mononuclear cells, TXNIP, MDA, SOD, ROS and inflammatory cytokines levels were altered by OVA but reversed by resveratrol or NAC. Conclusions Resveratrol could effectively alleviate murine AR by inhibiting TXNIP-oxidative stress pathway.
Collapse
Key Words
- AR, Allergic rhinitis
- Allergic rhinitis
- ELISA, Enzyme-linked immunosorbent assay
- IHC, Immunohistochemistry
- MDA, Malondialdehyde
- NAC, N-acetylcysteine
- NLF, Nasal lavage fluid
- OVA, Ovalbumin
- Ovalbumin
- Oxidative stress
- ROS, Reactive oxygen species
- Reactive oxygen species
- Resveratrol
- SOD, Superoxide dismutase
- TXNIP
- TXNIP, Thioredoxin-interacting protein
- Th2, Type 2T helper
Collapse
|
19
|
Zheng Z, Zhang G, Liang X, Li T. LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis. Mol Cell Biochem 2020; 476:443-455. [PMID: 32990894 DOI: 10.1007/s11010-020-03921-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
Cerebrovascular diseases have a high mortality and disability rate in developed countries. Endothelial cell injury is the main cause of atherosclerosis and cerebrovascular disease. Long non-coding RNA (lncRNA) has been proved to participate in the progression of endothelial cell. Our study aimed to develop the function of lncRNA opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell injury. The expression of OIP5-AS1, miR-98-5p and High-mobility group protein box-1 (HMGB1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry were used to detect the cell proliferation and apoptosis. The levels of cyclinD1, Bcl-2 Associated X Protein (Bax), Cleaved-caspase-3, Toll like receptors 4 (TLR4), phosphorylation of p65 (p-P65), phosphorylation of nuclear factor-kappa B inhibitor α (p-IκB-α) and HMGB1 were measured by Western blot. The concentrations of Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α) were detected by Enzyme-linked immunosorbent assay (ELISA). The production of Reactive oxygen species (ROS), Superoxide Dismutase (SOD) and malondialdehyde (MDA) was detected by the corresponding kit. The targets of OIP5-AS and miR-98-5p were predicted by starBase 3.0 and TargetScan and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The expression of OIP5-AS1 was upregulated, while miR-98-5p was downregulated in ox-LDL-induced human umbilical vein endothelial cells (HUVECs). Functionally, knockdown of OIP5-AS1 induced proliferation and inhibited apoptosis, inflammatory injury and oxidative stress injury in ox-LDL-induced HUVEC cells. Interestingly, miR-98-5p was a target of OIP5-AS1 and miR-98-5p inhibition abolished the effects of OIP5-AS1 downregulation on ox-LDL-induced HUVECs injury. More importantly, miR-98-5p directly targeted HMGB1, and OIP5-AS1 regulated the expression of HMGB1 by sponging miR-98-5p. Finally, OIP5-AS1 regulated the TLR4/nuclear factor-kappa B (NF-κB) signaling pathway through miR-98-5p/HMGB1 axis. LncRNA OIP5-AS1 accelerates ox-LDL-induced endothelial cell injury through regulating HMGB1 mediated by miR-98-5p via the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhanqiang Zheng
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Guanglin Zhang
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaodong Liang
- Department of Neurointervention, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Tianxiao Li
- Department of Neurointervention, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, and Henan Provincial Neurointerventional Engineering Research Center, No. 7, Weiwu Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
20
|
Ma BN, Li XJ. Resveratrol extracted from Chinese herbal medicines: A novel therapeutic strategy for lung diseases. CHINESE HERBAL MEDICINES 2020; 12:349-358. [PMID: 32963508 PMCID: PMC7498443 DOI: 10.1016/j.chmed.2020.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Lung diseases and their related complications represent a critical source of morbidity and mortality globally and have become a research focus in recent years. There are plenty of hazards that threaten the health of lung by exposure to external environmental stimuli, such as dust, cigarette smoke, PM2.5, air pollution and pathogen infection. These risks lead to the impairment of lung function and subsequent lung diseases including pneumonia, chronic obstructive pulmonary disease (COPD), asthma and idiopathic pulmonary fibrosis (IPF). Compared with antibiotics and corticosteroids therapies, traditional Chinese medicine prescriptions are more effective with fewer side effects. A considerable variety of bioactive ingredients have been extracted and identified from Chinese herbal medicines and are used for the treatment of different lung diseases, including resveratrol. Increasing studies have reported promising therapeutic effects of resveratrol against lung diseases by inhibiting oxidative stress, inflammation, aging, fibrosis and cancer both in vitro and in vivo. In this review, the recent progress in the studies of lung-protective effects and underlying mechanisms of resveratrol and also highlight the potency of resveratrol and traditional Chinese prescriptions containing resveratrol as promising therapeutic options were summarized for the treatment of lung and respiratory diseases.
Collapse
Affiliation(s)
- Bo-Ning Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Jiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
21
|
Yi SJ, Wu Y, Li LL, Liang QK, Xiao Y. Compound amino acid combined with high-dose vitamin B6 attenuate traumatic coagulopathy via inhibiting inflammation by HMGB1/TLR4/NF-κB pathway. J Inflamm (Lond) 2020; 17:30. [PMID: 32874136 PMCID: PMC7456387 DOI: 10.1186/s12950-020-00258-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic coagulopathy (TC) arises primarily from coagulation system failure to maintain adequate hemostasis after serious blood loss or trauma. Circulatory homeostasis restoration is the mainstay of the therapeutic approach to TC, but the effects are significantly inhibited by coagulopathy. OBJECTIVE To identify the therapeutic effects and underlying mechanism of compound amino acid (CAA) combined with high-dosage of vitamin B6 (VB6) on TC. METHODS Rabbit traumatic model and cellular model were used to evaluate the effect of CAA combined with high-dosage of VB6 in TC. Blood concentrations of AST and ALT were measured using the Vitros 250 device while blood APTT, PT and TT concentrations were measured using commercial diagnostics kits. Furthermore, qRT-PCR, ELISA and Western blotting were used to determine the expression of clotting factor (II, VII, IX, X and XI), inflammatory factors (TNF-α, IL-6 and IL-1β) and HMGB1/TLR4/NF-κB signaling-related proteins, respectively. RESULTS In the rabbit traumatic model, CAA combined with high-dosage of VB6 therapy inhibited the high expression of AST and ALT, but increased the expression of coagulation factors. Additionally, in both the rabbit trauma model and cellular injury model, CAA combined with high-dosage of VB6 inhibited the expression of inflammatory factors (IL-6, TNF-α and IL-1β) and proteins (HMGB1, TLR4 and p-p65) in HMGB1/TLR4/NF-κB pathway. Most importantly, over-expression of HMGB1 reversed the effect of CAA and VB6 in HUVECs and EA.hy926 cells injury model. CONCLUSION CAA combined with high-dosage of VB6 alleviated TC and inhibited the expression and secretion of inflammatory factors by inhibiting HMGB1-mediated TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Shi-Jian Yi
- Department of General Surgery, Shenzhen University General Hospital, No.1098, Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong Province People’s Republic of China
| | - Yang Wu
- Department of General Surgery, Shenzhen University General Hospital, No.1098, Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong Province People’s Republic of China
| | - Lan-Lan Li
- Department of Infection Control, Shenzhen Fuyong People’s Hospital, Shenzhen, 518103 People’s Republic of China
| | - Qian-Kun Liang
- Department of General Surgery, Shenzhen University General Hospital, No.1098, Xueyuan Avenue, Nanshan District, Shenzhen, 518055 Guangdong Province People’s Republic of China
| | - Yue Xiao
- Department of Outpatient, Shenzhen University General Hospital, Shenzhen, 518055 People’s Republic of China
| |
Collapse
|
22
|
Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0363. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol 2020; 11:484. [PMID: 32265930 PMCID: PMC7099994 DOI: 10.3389/fimmu.2020.00484] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all cell types. It is a multi-facet protein exerting functions both inside and outside of cells. Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions activating innate immunity, after being actively released from cells or passively released upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation without compromising protective LPS/TLR4-dependent functions. Another important therapeutic strategy is established on the administration of HMGB1 antagonists precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules capable of activating intracellular cognate receptors. Here we summarize the role of HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-associated molecular pattern molecule and as a therapeutic target in inflammatory diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory conditions are discussed.
Collapse
Affiliation(s)
- Huan Yang
- Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Haichao Wang
- Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|