1
|
Lileikyte G, Bakochi A, Ali A, Moseby-Knappe M, Cronberg T, Friberg H, Lilja G, Levin H, Årman F, Kjellström S, Dankiewicz J, Hassager C, Malmström J, Nielsen N. Serum proteome profiles in patients treated with targeted temperature management after out-of-hospital cardiac arrest. Intensive Care Med Exp 2023; 11:43. [PMID: 37455296 DOI: 10.1186/s40635-023-00528-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Definition of temporal serum proteome profiles after out-of-hospital cardiac arrest may identify biological processes associated with severe hypoxia-ischaemia and reperfusion. It may further explore intervention effects for new mechanistic insights, identify candidate prognostic protein biomarkers and potential therapeutic targets. This pilot study aimed to investigate serum proteome profiles from unconscious patients admitted to hospital after out-of-hospital cardiac arrest according to temperature treatment and neurological outcome. METHODS Serum samples at 24, 48, and 72 h after cardiac arrest at three centres included in the Target Temperature Management after out-of-hospital cardiac arrest trial underwent data-independent acquisition mass spectrometry analysis (DIA-MS) to find changes in serum protein concentrations associated with neurological outcome at 6-month follow-up and targeted temperature management (TTM) at 33 °C as compared to 36 °C. Neurological outcome was defined according to Cerebral Performance Category (CPC) scale as "good" (CPC 1-2, good cerebral performance or moderate disability) or "poor" (CPC 3-5, severe disability, unresponsive wakefulness syndrome, or death). RESULTS Of 78 included patients [mean age 66 ± 12 years, 62 (80.0%) male], 37 (47.4%) were randomised to TTM at 36 °C. Six-month outcome was poor in 47 (60.3%) patients. The DIA-MS analysis identified and quantified 403 unique human proteins. Differential protein abundance testing comparing poor to good outcome showed 19 elevated proteins in patients with poor outcome (log2-fold change (FC) range 0.28-1.17) and 16 reduced proteins (log2(FC) between - 0.22 and - 0.68), involved in inflammatory/immune responses and apoptotic signalling pathways for poor outcome and proteolysis for good outcome. Analysis according to level of TTM showed a significant protein abundance difference for six proteins [five elevated proteins in TTM 36 °C (log2(FC) between 0.33 and 0.88), one reduced protein (log2(FC) - 0.6)] mainly involved in inflammatory/immune responses only at 48 h after cardiac arrest. CONCLUSIONS Serum proteome profiling revealed an increase in inflammatory/immune responses and apoptosis in patients with poor outcome. In patients with good outcome, an increase in proteolysis was observed, whereas TTM-level only had a modest effect on the proteome profiles. Further validation of the differentially abundant proteins in response to neurological outcome is necessary to validate novel biomarker candidates that may predict prognosis after cardiac arrest.
Collapse
Affiliation(s)
- Gabriele Lileikyte
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Helsingborg Hospital, Svartbrödragränden 3, 251 87, Helsingborg, Sweden.
| | - Anahita Bakochi
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Helena Levin
- Department of Clinical Sciences Lund, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Filip Årman
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Sven Kjellström
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet and Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Helsingborg Hospital, Svartbrödragränden 3, 251 87, Helsingborg, Sweden
| |
Collapse
|
2
|
Bernhard P, Bretthauer BA, Brixius SJ, Bügener H, Groh JE, Scherer C, Damjanovic D, Haberstroh J, Trummer G, Benk C, Beyersdorf F, Schilling O, Pooth JS. Serum proteome alterations during conventional and extracorporeal resuscitation in pigs. J Transl Med 2022; 20:238. [PMID: 35606879 PMCID: PMC9125930 DOI: 10.1186/s12967-022-03441-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Only a small number of patients survive an out-of-hospital cardiac arrest (CA) and can be discharged from hospital alive with a large percentage of these patients retaining neurological impairments. In recent years, extracorporeal cardiopulmonary resuscitation (ECPR) has emerged as a beneficial strategy to optimize cardiac arrest treatment. However, ECPR is still associated with various complications. To reduce these problems, a profound understanding of the underlying mechanisms is required. This study aims to investigate the effects of CA, conventional cardiopulmonary resuscitation (CPR) and ECPR using a whole-body reperfusion protocol (controlled and automated reperfusion of the whole body-CARL) on the serum proteome profiles in a pig model of refractory CA. METHODS N = 7 pigs underwent 5 min of untreated CA followed by 30 min CPR and 120 min perfusion with CARL. Blood samples for proteomic analysis were drawn at baseline, after CPR and at the end of the CARL period. Following albumin-depletion, proteomic analysis was performed using liquid chromatography-tandem mass spectrometry. RESULTS N = 21 serum samples were measured resulting in the identification and quantification of 308-360 proteins per sample and 388 unique proteins in total. The three serum proteome profiles at the investigated time points clustered individually and segregated almost completely when considering a 90% confidence interval. Differential expression analysis showed significant abundance changes in 27 proteins between baseline and after CPR and in 9 proteins after CARL compared to CPR. Significant findings were further validated through a co-abundance cluster analysis corroborating the observed abundance changes. CONCLUSIONS The presented data highlight the impact of systemic ischemia and reperfusion on the entire serum proteome during resuscitation with a special focus on changes regarding haemolysis, coagulation, inflammation, and cell-death processes. Generally, the observed changes contribute to post-ischemic complications. Better understanding of the underlying mechanisms during CA and resuscitation may help to limit these complications and improve therapeutic options.
Collapse
Affiliation(s)
- Patrick Bernhard
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Berit Amelie Bretthauer
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Sam Joé Brixius
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Hannah Bügener
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Johannes Elias Groh
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christian Scherer
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Domagoj Damjanovic
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jörg Haberstroh
- Department of Experimental Surgery, Center for Experimental Models and Transgenic Service, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christoph Benk
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Steffen Pooth
- Department of Cardiovascular Surgery, University Heart Center Freiburg, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|