1
|
Noor J, Chaudhry A, Batool S, Noor R, Fatima G. Exploring the Impact of the Gut Microbiome on Obesity and Weight Loss: A Review Article. Cureus 2023; 15:e40948. [PMID: 37503494 PMCID: PMC10368799 DOI: 10.7759/cureus.40948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
The global obesity pandemic has prompted efforts to search for novel intervention options, including maximizing the health benefits of certain gut microbes and their metabolic byproducts. Our increased understanding of gut microbiota can potentially lead to revolutionary advancements in weight management and general well-being. We studied the association between gut microbiota and obesity, as well as the possible benefits of probiotics, prebiotics, and synbiotics in the prevention and management of obesity in this review. We observed a relationship between the metabolism of nutrients, energy consumption, and gut flora. Numerous mechanisms, including the synthesis of short-chain fatty acids, hormone stimulation, and persistent low-grade inflammation, have been postulated to explain the role of gut bacteria in the etiology of obesity. It has been discovered that the diversity and composition of the intestinal microbiome vary in response to various forms of obesity therapy, which raises concerns about the potential impact of these changes on weight loss. According to research, probiotics, prebiotics, and synbiotics may alter the release of hormones, neurotransmitters, and inflammatory factors, thereby diminishing the stimuli of food consumption that lead to weight gain. More clinical research is required to determine the optimal probiotic, prebiotic, and synbiotic supplementation dosages, formulations, and regimens for long-term weight management and to determine how different gastrointestinal microbiome bacterial species may influence weight gain.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| | - Riwad Noor
- Medicine/Public Health, Nishtar Hospital, Multan, PAK
| | - Ghulam Fatima
- Internal Medicine, Abbasi Shaheed Hospital, Karachi, PAK
| |
Collapse
|
2
|
Koper J, Troise AD, Loonen LMP, Vitaglione P, Capuano E, Fogliano V, Wells JM. Tryptophan Supplementation Increases the Production of Microbial-Derived AhR Agonists in an In Vitro Simulator of Intestinal Microbial Ecosystem. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3958-3968. [PMID: 35344652 PMCID: PMC8991005 DOI: 10.1021/acs.jafc.1c04145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) plays an important role in intestinal homeostasis, and some microbial metabolites of tryptophan are known AhR agonists. In this study, we assessed the impact of tryptophan supplementation on the formation of tryptophan metabolites, AhR activation, and microbiota composition in the simulator of the human intestinal microbial ecosystem (SHIME). AhR activation, microbial composition, and tryptophan metabolites were compared during high tryptophan supplementation (4 g/L tryptophan), control, and wash-out periods. During tryptophan supplementation, the concentration of several tryptophan metabolites was increased compared to the control and wash-out period, but AhR activation by fermenter supernatant was significantly decreased. This was due to the higher levels of tryptophan, which was found to be an antagonist of AhR signaling. Tryptophan supplementation induced most microbial changes in the transverse colon including increased relative abundance of lactobacillus. We conclude that tryptophan supplementation leads to increased formation of AhR agonists in the colon.
Collapse
Affiliation(s)
- Jonna
EB Koper
- Department
of Agrotechnology & Food Sciences, Wageningen
University, Wageningen 6708 WE, The Netherlands
- Department
of Animal Sciences, Wageningen University, Wageningen 6708 WD, The Netherlands
| | - Antonio Dario Troise
- Department
of Food Science, University of Naples “Federico
II”, Parco
Gussone 80055, Italy
| | - Linda MP Loonen
- Department
of Animal Sciences, Wageningen University, Wageningen 6708 WD, The Netherlands
| | - Paola Vitaglione
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Parco Gussone 80055, Italy
| | - Edoardo Capuano
- Department
of Agrotechnology & Food Sciences, Wageningen
University, Wageningen 6708 WE, The Netherlands
| | - Vincenzo Fogliano
- Department
of Agrotechnology & Food Sciences, Wageningen
University, Wageningen 6708 WE, The Netherlands
| | - Jerry M Wells
- Department
of Animal Sciences, Wageningen University, Wageningen 6708 WD, The Netherlands
| |
Collapse
|
3
|
Rodenhouse A, Talukder MAH, Lee JI, Govindappa PK, O'Brien M, Manto KM, Lloyd K, Wandling GD, Wright JR, Chen See JR, Anderson SL, Lamendella R, Hegarty JP, Elfar JC. Altered gut microbiota composition with antibiotic treatment impairs functional recovery after traumatic peripheral nerve crush injury in mice: effects of probiotics with butyrate producing bacteria. BMC Res Notes 2022; 15:80. [PMID: 35197129 PMCID: PMC8867741 DOI: 10.1186/s13104-022-05967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Antibiotics (ABX) are widely used for life-threatening infections and also for routine surgical operations. Compelling evidence suggests that ABX-induced alterations of gut microbiota composition, termed dysbiosis, are linked with diverse disease states including neurological and neurodegenerative conditions. To combat the consequences of dysbiosis, probiotics (PBX) are widely used. ABX-induced dysbiosis is reported to impair neurological function after spinal cord injury. Traumatic peripheral nerve injury (TPNI) results in profound neurologic impairment and permanent disability. It is unknown whether ABX treatment-induced dysbiosis has any impact on TPNI-induced functional recovery, and if so, what role medical-grade PBX could have on TPNI recovery. RESULTS In this study, ABX-induced dysbiosis and PBX-induced microbiota enrichment models were used to explore the potential role of gut microbiome in TPNI. Stool analysis with 16S ribosomal RNA (rRNA) gene sequencing confirmed ABX-induced dysbiosis and revealed that ABX-induced changes could be partially restored by PBX administration with an abundance of butyrate producing bacteria. Pre-injury ABX significantly impaired, but pre-injury PBX significantly improved post-TPNI functional recovery. Importantly, post-injury PBX protected against pre-injury ABX-induced functional impairment. These findings demonstrate that reestablishment of gut microbiota composition with butyrate producing PBX during ABX-induced dysbiosis could be a useful adjuvant therapy for TPNI.
Collapse
Affiliation(s)
- Andrew Rodenhouse
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA.
| | - Jung Il Lee
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Mary O'Brien
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Kristen M Manto
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Kelsey Lloyd
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Grant D Wandling
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | | | | | | | - Regina Lamendella
- Wright Labs LLC, Huntingdon, PA, USA
- Juniata College, Huntingdon, PA, USA
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA.
| |
Collapse
|
4
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
5
|
Tsai WH, Chou CH, Huang TY, Wang HL, Chien PJ, Chang WW, Lee HT. Heat-Killed Lactobacilli Preparations Promote Healing in the Experimental Cutaneous Wounds. Cells 2021; 10:3264. [PMID: 34831486 PMCID: PMC8625647 DOI: 10.3390/cells10113264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Probiotics are defined as microorganisms with beneficial health effects when consumed by humans, being applied mainly to improve allergic or intestinal diseases. Due to the increasing resistance of pathogens to antibiotics, the abuse of antibiotics becomes inefficient in the skin and in systemic infections, and probiotics may also provide the protective effect for repairing the healing of infected cutaneous wounds. Here we selected two Lactobacillus strains, L. plantarum GMNL-6 and L. paracasei GMNL-653, in heat-killed format to examine the beneficial effect in skin wound repair through the selection by promoting collagen synthesis in Hs68 fibroblast cells. The coverage of gels containing heat-killed GMNL-6 or GMNL-653 on the mouse tail with experimental wounds displayed healing promoting effects with promoting of metalloproteinase-1 expression at the early phase and reduced excessive fibrosis accumulation and deposition in the later tail-skin recovery stage. More importantly, lipoteichoic acid, the major component of Lactobacillus cell wall, from GMNL-6/GMNL-653 could achieve the anti-fibrogenic benefit similar to the heat-killed bacteria cells in the TGF-β stimulated Hs68 fibroblast cell model. Our study offers a new therapeutic potential of the heat-killed format of Lactobacillus as an alternative approach to treating skin healing disorders.
Collapse
Affiliation(s)
- Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Chia-Hsuan Chou
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Tsuei-Yin Huang
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Hui-Ling Wang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
| | - Peng-Ju Chien
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy & Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115024, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
6
|
Tong L, Zhang X, Hao H, Liu Q, Zhou Z, Liang X, Liu T, Gong P, Zhang L, Zhai Z, Hao Y, Yi H. Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice. Nutrients 2021; 13:3319. [PMID: 34684320 PMCID: PMC8541209 DOI: 10.3390/nu13103319] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease. Probiotics have a potential beneficial effect on the prevention of UC onset and relapse in clinical trials. Lactobacillus rhamnosus GG (L. rhamnosus GG) have shown clinical benefits on UC patients, however, the precise mechanisms are unknown. The aim of this study is to explore the effect of extracellular vesicles released from L. rhamnosus GG (LGG-EVs) on dextran sulfate sodium (DSS)-induced colitis and propose the underlying mechanism of LGG-EVs for protecting against colitis. The results showed that LGG-EVs could prevent colonic tissue damage and shortening of the colon (p < 0.01), and ameliorate intestinal inflammation by inhibiting TLR4-NF-κB-NLRP3 axis activation. Consistently, the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-2) were suppressed effectively upon LGG-EVs treatment (p < 0.05). The 16S rRNA sequencing showed that LGG-EVs administration could reshape the gut microbiota in DSS-induced colitis mice, which further alters the metabolism pathways of gut microbiota. These findings propose a novel perspective of L. rhamnosus GG in attenuating inflammation mediated by extracellular vesicles and offer consideration for developing oral gavage of LGG-EVs for colitis therapies.
Collapse
Affiliation(s)
- Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zihan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| |
Collapse
|
7
|
Jin H, Leng Q, Zhang C, Zhu Y, Wang J. P-cymene prevent high-fat diet-associated colorectal cancer by improving the structure of intestinal flora. J Cancer 2021; 12:4355-4361. [PMID: 34093835 PMCID: PMC8176407 DOI: 10.7150/jca.57049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate the preventing effect of P-cymene on high fat diet-related colorectal cancer and its mechanism. Methods: Forty Wistar rats were randomly divided into G1 group (high-fat diet), G2 group (high-fat diet + DMH), G3 group (high-fat diet + P-cymene), and G4 group (high-fat diet + DMH + P-cymene).G2 and G4 groups were subcutaneously injected with dimethylhydrazine (DMH), and G3 and G4 groups were intragastrically administered with P-cymene to investigate the effects of P-cymene on tumor formation, inflammatory factors, glucose, lipid metabolism and gut microbes. Results: No tumors were formed in the high-fat diet group (G1) or the high-fat diet + P-cymone group (G3). 7 rats (70%) of the high-fat diet + DMH group (G2) developed 8 cancerous nodules, including 6 adenocarcinomas and 2 signet ring cell carcinomas; 4 rats (40%) in the high-fat diet + DMH + P-cymene group (G4) group formed 4 cancerous nodules, all of which were adenocarcinoma. There was no significant difference in the changes of glucose and lipid metabolism in each group. After the use of P-cymene, IL-1 decreased, IL-6 increased, and LEP decreased in the G4 group.The difference was statistically significant.The contents of Candida and Unclassified Bacteria in the G3 group rats were significantly lower than those in the G1 group.At the species level comparison, compared with the G2 group, the content of Clostridium XlVa in the intestinal tract of the G2 group rats was significantly increased compared to the G1 group. Conclusion: In this study, it was found that p-cymenen can prevent the occurrence of colorectal cancer related to high-fat and high-calorie diet. The mechanism may be is reducing the expression of inflammatory factors such as IL-1 and LEP, increasing the expression of inflammatory factors of IL-6, and promoting the growth of probiotics such as bifidobacteria, isobacteria and clostridium IV in the intestinal tract.
Collapse
Affiliation(s)
- Heiying Jin
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 23Nanhu Road, Nanjing 210017, China
| | - Qiang Leng
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 23Nanhu Road, Nanjing 210017, China
| | - Chunxia Zhang
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 23Nanhu Road, Nanjing 210017, China
| | - Ya Zhu
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 23Nanhu Road, Nanjing 210017, China
| | - Jun Wang
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 23Nanhu Road, Nanjing 210017, China
| |
Collapse
|
8
|
Tsai WH, Chou CH, Chiang YJ, Lin CG, Lee CH. Regulatory effects of Lactobacillus plantarum-GMNL6 on human skin health by improving skin microbiome. Int J Med Sci 2021; 18:1114-1120. [PMID: 33526970 PMCID: PMC7847631 DOI: 10.7150/ijms.51545] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria response to their environment by producing some compounds which are used in cosmetic and pharmaceutical applications. Some probiotics can regulate immune response and modulate the symptoms of several diseases. Bacteria affect skin response to skin care products. Bacteria are thought to play an important role in acne incidence, skin moisture, and nutrient metabolism, but only a few studies have focused on the extracts of Lactobacillus plantarum in skin care. In this study, we identified that L. plantarum-GMNL6 enhanced collagen synthesis and the gene expression of serine palmitoyltransferase small subunit A. Meanwhile, L. plantarum-GMNL6 reduced the melanin synthesis, the biofilm of Staphylococcus aureus, and the proliferation of Cutibacterium acnes. Information from clinical observation during the ointment for external face use in people displayed that the syndromes of skin moisture, skin color, spots, wrinkles, UV spots, and porphyrins were improved. The diversification of human skin microbiomes was affected by smearing the face of volunteers with L. plantarum-GMNL6. Understanding the potential mechanisms of the action of L. plantarum-GMNL6 in dermatologic conditions promotes the development of care products.
Collapse
Affiliation(s)
- Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Chia-Hsuan Chou
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Ying-Ju Chiang
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Ching-Gong Lin
- Bachelor Program in Cosmeceutical and Biotech industry, Department of Cosmetic Science, Chia Nan University of Pharmacy & Science
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Aoun A, Darwish F, Hamod N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev Nutr Food Sci 2020; 25:113-123. [PMID: 32676461 PMCID: PMC7333005 DOI: 10.3746/pnf.2020.25.2.113] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
The link between the gut microbiome and obesity is not well defined. Understanding of the role of the gut microbiome in weight and health management may lead to future revolutionary changes for treating obesity. This review examined the relationship between obesity and the gut microbiome, and the role of probiotics, prebiotics, and synbiotics for preventing and treating obesity. We used PubMed and Google Scholar to collect appropriate articles for the review. We showed that the gut microbiome has an impact on nutrient metabolism and energy expenditure. Moreover, different modalities of obesity treatment have been shown to change the diversity and composition of the gut microbiome; this raises questions about the role these changes may play in weight loss. In addition, studies have shown that supplementation with probiotics, prebiotics, and synbiotics may alter the secretion of hormones, neurotransmitters, and inflammatory factors, thus preventing food intake triggers that lead to weight gain. Further clinical studies are needed to better understand how different species of bacteria in the gut microbiome may affect weight gain, and to determine the most appropriate doses, compositions, and regimens of probiotics, prebiotics, and synbiotics supplementation for long-term weight control.
Collapse
Affiliation(s)
- Antoine Aoun
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Fatima Darwish
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Natacha Hamod
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| |
Collapse
|