1
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
2
|
Hao Q, Liu Y, Liu Y, Shi L, Chen Y, Yang L, Jiang Z, Liu Y, Wang C, Wang S, Sun L. Cysteine- and glycine-rich protein 1 predicts prognosis and therapy response in patients with acute myeloid leukemia. Clin Exp Med 2024; 24:57. [PMID: 38546813 PMCID: PMC10978675 DOI: 10.1007/s10238-023-01269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/01/2023] [Indexed: 04/01/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. The current risk stratification system is essential but remains insufficient to select the best schedules. Cysteine-rich protein 1 (CSRP1) is a member of the CSRP family and associated with poor clinicopathological features in many tumors. This study aimed to explore the clinical significance and molecular mechanisms of cysteine- and glycine-rich protein 1 (CSRP1) in AML. RT-qPCR was used to detect the relative expression of CSRP1 in our clinical cohort. Functional enrichment analysis of CSRP1-related differentially expressed genes was carried out by GO/KEGG enrichment analysis, immune cell infiltration analysis, and protein-protein interaction (PPI) network. The OncoPredict algorithm was implemented to explore correlations between CSRP1 and drug resistance. CSRP1 was highly expressed in AML compared with normal samples. High CSRP1 expression was an independent poor prognostic factor. Functional enrichment analysis showed neutrophil activation and apoptosis were associated with CSRP1. In the PPI network, 19 genes were present in the most significant module, and 9 of them were correlated with AML prognosis. The high CSRP1 patients showed higher sensitivity to 5-fluorouracil, gemcitabine, rapamycin, cisplatin and lower sensitivity to fludarabine. CSRP1 may serve as a potential prognostic marker and a therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Qianqian Hao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yajun Liu
- Department of Orthopaedics, Warren Alpert Medical School/Rhode Island Hospital, Brown University, Rhode Island, USA
| | - Luyao Shi
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yufei Chen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Tang L, Huang H, Tang Y, Li Q, Wang J, Li D, Zhong Z, Zou P, You Y, Cao Y, Kong Y, Guo A, Zhou S, Li H, Meng F, Xiao Y, Zhu X. CD44v6 chimeric antigen receptor T cell specificity towards AML with FLT3 or DNMT3A mutations. Clin Transl Med 2022; 12:e1043. [PMID: 36163632 PMCID: PMC9513046 DOI: 10.1002/ctm2.1043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 12/08/2022] Open
Abstract
Background Chimeric antigen receptor T‐cell (CAR‐T) therapy for acute myeloid leukaemia (AML) has thus far been elusive, in part due to target restriction and phenotypic heterogeneity of AML cells. Mutations of the FMS‐like tyrosine kinase 3 (FLT3) and DNA methyltransferase 3A (DNMT3A) genes are common driver mutations that present with a poor prognosis in AML patients. We found that AML patients with FLT3 or DNMT3A mutations had higher expression of CD44 isoform 6 (CD44v6) compared to normal specimens. Therefore, we intended to demonstrate CD44v6 could be a specific option for AML with FLT3 or DNMT3A mutations. Methods Internal tandem duplication (ITD) mutations of FLT3 (FLT3/ITD) knock‐in clone and DNMT3A‐R882H mutant clones of SKM‐1 cells were generated using CRISPR/Cas9 and lentiviral transfection, respectively. CD44v6 CAR‐T cells were constructed by transfecting T cells with lentivirus containing CD44v6 CAR. CD44v6 expression in AML cell lines, AML patients and healthy donors was evaluated by flow cytometry. DNA methylation assays were used to analyse the mechanisms of FLT3 and DNMT3A mutations affecting CD44v6 expression. Results Aberrant overexpression of CD44v6 was observed in AML cell lines with FLT3 or DNMT3A mutations compared to the wild‐type SKM‐1 or K562 cells. AML patients with FLT3 or DNMT3A mutations had higher expression of CD44v6 compared to normal specimens. Then we constructed CD44v6 CAR‐T cells and found that CD44v6 CAR‐T specifically lysed CD44v6+ cells, accompanied by cytokines release. No significant killing effect was observed from CD44v6‐ AML cells and normal cells after co‐culture with CD44v6 CAR‐T. These results were also observed in vivo. Furthermore, we found that FLT3 or DNMT3A mutations induced CD44v6 overexpression by downregulating the CpG methylation of CD44 promoter. Conclusions Collectively, CD44v6 is a promising target of CAR‐T for AML patients with FLT3 or DNMT3A mutations.
Collapse
Affiliation(s)
- Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongming Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yutong Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Hematology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anyuan Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhou
- Department of Hematology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan, China
| | - Huimin Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Kuželová K, Brodská B, Marková J, Petráčková M, Schetelig J, Ransdorfová Š, Gašová Z, Šálek C. NPM1 and DNMT3A mutations are associated with distinct blast immunophenotype in acute myeloid leukemia. Oncoimmunology 2022; 11:2073050. [PMID: 35558161 PMCID: PMC9090295 DOI: 10.1080/2162402x.2022.2073050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The immune system is important for elimination of residual leukemic cells during acute myeloid leukemia (AML) therapy. Anti-leukemia immune response can be inhibited by various mechanisms leading to immune evasion and disease relapse. Selected markers of immune escape were analyzed on AML cells from leukapheresis at diagnosis (N = 53). Hierarchical clustering of AML immunophenotypes yielded distinct genetic clusters. In the absence of DNMT3A mutation, NPM1 mutation was associated with decreased HLA expression and low levels of other markers (CLIP, PD-L1, TIM-3). Analysis of an independent cohort confirmed decreased levels of HLA transcripts in patients with NPM1 mutation. Samples with combined NPM1 and DNMT3A mutations had high CLIP surface amount suggesting reduced antigen presentation. TIM-3 transcript correlated not only with TIM-3 surface protein but also with CLIP and PD-L1. In our cohort, high levels of TIM-3/PD-L1/CLIP were associated with lower survival. Our results suggest that AML genotype is related to blast immunophenotype, and that high TIM-3 transcript levels in AML blasts could be a marker of immune escape. Cellular pathways regulating resistance to the immune system might contribute to the predicted response to standard therapy of patients in specific AML subgroups and should be targeted to improve AML treatment.
Collapse
Affiliation(s)
- Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,CONTACT Kateřina Kuželová Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Marková
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Petráčková
- Department of Gene Immunotherapy Research, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Johannes Schetelig
- Medical Clinic I, Division Hematology, Cell Therapy, and Medical Oncology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenka Gašová
- Department of Apheresis, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Šálek
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Rinaldi I, Louisa M, Mulya Sari R, Arwanih E. FLT3-ITD Mutation and FLT3 Ligand Plasma Level Were Not Associated with One-Year Survival of Indonesian Acute Myeloid Leukemia Patients. Onco Targets Ther 2021; 14:1479-1486. [PMID: 33664580 PMCID: PMC7924121 DOI: 10.2147/ott.s282842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/23/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To analyze the association of FLT3-ITD mutation and FLT3 ligand plasma level with one-year survival of Indonesian acute myeloid leukemia (AML) patients. METHODS A prospective cohort study was conducted to determine the association between FLT-3-ITD mutation and FLT3 ligand plasma level with one-year survival of Indonesian AML patients. In the study, a total of 51 AML patients were obtained from two tertiary hospitals in Indonesia from year 2018 to 2020. Inclusion criteria were de novo AML male and female patients aged ≥18 years old. Exclusion criteria were prior myelodysplastic syndrome and patients that refused to participate in the study. FLT3-ITD genotype of patients was then analyzed using PCR method while FLT3 ligand plasma level was measured using ELISA method. Patients were then followed-up for 1 year or until death occurred with survival as the measured outcome. Association between independent and dependent variable were analyzed by cox regression proportional hazard. RESULTS Eleven patients (21.5%) in this study had FLT3-ITD mutation. The median age of AML patients was 45 (18-71) years, and the median blast percentage was 50% (5-87%). After one-year follow-up, 33 (64.7%) patients had died. The median survival of AML patients was 6 months. Univariate analysis showed no association between FLT3-ITD mutation status (HR: 1.051 ; 95% CI: 0.483-2.286; P: 0.901) and FLT3 ligand plasma level (HR: 0.798; 95% CI: 0.347-1.837; p= 0.596), and age (HR: 1.283; 95% CI: 0.575-2.862; p= 0.542) with one-year survival of AML patients, but multivariate analysis showed association between GFR with one-year survival of AML patients in this cohort (HR: 4.053; 95% CI: 1.469-11.183; p= 0.007). CONCLUSION One-year survival of AML patients in Indonesia is not affected by FLT3-ITD mutation and FLT3 ligand plasma level. However, GFR showed association with one-year survival of AML patient in this cohort study.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Resti Mulya Sari
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dharmais Cancer Hospital,Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Elly Arwanih
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
7
|
Targeted inhibition of cooperative mutation- and therapy-induced AKT activation in AML effectively enhances response to chemotherapy. Leukemia 2020; 35:2030-2042. [PMID: 33299144 DOI: 10.1038/s41375-020-01094-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022]
Abstract
Most AML patients exhibit mutational activation of the PI3K/AKT signaling pathway, which promotes downstream effects including growth, survival, DNA repair, and resistance to chemotherapy. Herein we demonstrate that the inv(16)/KITD816Y AML mouse model exhibits constitutive activation of PI3K/AKT signaling, which was enhanced by chemotherapy-induced DNA damage through DNA-PK-dependent AKT phosphorylation. Strikingly, inhibitors of either PI3K or DNA-PK markedly reduced chemotherapy-induced AKT phosphorylation and signaling leading to increased DNA damage and apoptosis of inv(16)/KITD816Y AML cells in response to chemotherapy. Consistently, combinations of chemotherapy and PI3K or DNA-PK inhibitors synergistically inhibited growth and survival of clonogenic AML cells without substantially inhibiting normal clonogenic bone marrow cells. Moreover, treatment of inv(16)/KITD816Y AML mice with combinations of chemotherapy and PI3K or DNA-PK inhibitors significantly prolonged survival compared to untreated/single-treated mice. Mechanistically, our findings implicate that constitutive activation of PI3K/AKT signaling driven by mutant KIT, and potentially other mutational activators such as FLT3 and RAS, cooperates with chemotherapy-induced DNA-PK-dependent activation of AKT to promote survival, DNA repair, and chemotherapy resistance in AML. Hence, our study provides a rationale to select AML patients exhibiting constitutive PI3K/AKT activation for simultaneous treatment with chemotherapy and inhibitors of DNA-PK and PI3K to improve chemotherapy response and clinical outcome.
Collapse
|