1
|
Li Y, He S, Zhao Y, Jiang H, Lyu Z. Unraveling the mechanism of tetrandrine combined with Buyang Huanwu Decoction against silicosis using network pharmacology and molecular docking analyses. Medicine (Baltimore) 2023; 102:e34716. [PMID: 37565873 PMCID: PMC10419795 DOI: 10.1097/md.0000000000034716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Silicosis is an incurable chronic disease characterized by lung fibrosis and inflammation. The combination of tetrandrine and Buyang Huanwu Decoction (BYHWD) has a curative effect on silicosis. However, the mechanism of action and the key active constituent in BYHWD are still unclear. The present study employed network pharmacology and molecular docking to determine the mechanism of action and the key active components of BYHWD of Tetrandrine in combination with BYHWD for silicosis. The primary elements and targets of BYHWD were obtained from the Traditional Chinese Medicine Systems Pharmacology and analysis platform. The targets associated with tetrandrine and silicosis were identified and extracted from the Comparative Toxicogenomics Database and GeneCards database. The potential targets for the treatment of silicosis using a combination of Tetrandrine and BYHWD were identified by considering the overlapping targets between compound drugs and silicosis. These targets were then utilized to construct protein-protein interaction networks, compound drug-ingredient-target networks, and perform enrichment analyses. The top 5 active ingredients present in the compound drug-ingredient-target network are tetrandrine, quercetin, luteolin, kaempferol, and beta-carotene. Similarly, the top 6 hub genes in the protein-protein interaction network are FGF2, MMP-9, MMP-1, IL-10, IL-17A, and IL-6. The molecular docking suggested that the active components may easily access the active pocket of the hub gene. The in-silico investigation suggested that quercetin might be the active component in BYHWD responsible for therapeutic effectiveness against silicosis. This study identified the active compound and potential molecular mechanism underlying the therapeutic effects of BYHWD in combination with tetrandrine for treating silicosis. Notably, we found that quercetin may serve as the key compound in BYHWD for the treatment of silicosis.
Collapse
Affiliation(s)
- Yi Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Song He
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Youdan Zhao
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhan Jiang
- Nursing College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhi Lyu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Wu WH, Feng YH, Min CY, Zhou SW, Chen ZD, Huang LM, Yang WL, Yang GH, Li J, Shi J, Quan H, Mao L. Clinical efficacy of tetrandrine in artificial stone-associated silicosis: A retrospective cohort study. Front Med (Lausanne) 2023; 10:1107967. [PMID: 36873890 PMCID: PMC9981789 DOI: 10.3389/fmed.2023.1107967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Background Outbreaks of silicosis have occurred among workers in the artificial stone (AS) industry, and there is currently no effective antifibrosis treatment for silicosis. Design A retrospective cohort study. Methods We retrospectively analyzed the clinical data of 89 artificial stone-associated silicosis patients treated in Shanghai Pulmonary Hospital (China). Patients who agreed to be administered tetrandrine entered the observation group and those who disagreed entered the control group. Changes in chest HRCT, pulmonary function, and clinical symptoms of patients in two groups were compared pre- and post-treatment. Results After treatment for 3-12 months, 56.5%-65.4% of patients in the observation group showed improvements in HRCT imaging, while there was no improvement in the control group (p < 0.05). Disease progression occurred in 0%-17.4% of patients in the observation group after 3-12 months of treatment compared with 44.4%-92.0% of patients in the control group (p < 0.05). After 3 months of treatment, the forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and diffusing capacity of the lung for carbon monoxide (DLco) in the observation group increased by 136.7 ± 189.2 mL (p < 0.05), 124.2 ± 169.9 mL (p < 0.05), and 1.4 ± 2.3 mL/min/mmHg (p > 0.05), respectively, while those in the control group decreased (145.8 ± 356.5; 107.5 ± 272.1; 1.9 ± 3.8). After 6 months of treatment, FVC, FEV1, and DLco in the observation group increased by 207.8 ± 372.2 mL (p > 0.05), 107.8 ± 295.2 mL (p > 0.05) and 0.7 ± 6.0 mL/min/mmHg (p > 0.05), respectively, while those of the control group decreased (383.3 ± 536.7; 215.6 ± 228.9; 1.4 ± 1.7). The incidences of clinical symptoms such as cough, expectoration, dyspnea, chest tightness, and chest pain in the observation group were decreased-after treatment (all p < 0.05), while the incidences of these symptoms increased in the control group, although the change was not statistically significant (all p > 0.05). Conclusion Tetrandrine can control and delay the progression of AS-associated silicosis fibrosis, with improved chest HRCT imaging and pulmonary function.
Collapse
Affiliation(s)
- Wen-Hong Wu
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yong-Hong Feng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Chun-Yan Min
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Shao-Wei Zhou
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zi-Dan Chen
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Li-Min Huang
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wen-Lan Yang
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Guang-Hong Yang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jin Shi
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hua Quan
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Health, Qingyang District Center for Disease Control and Prevention, Chengdu, China
| | - Ling Mao
- Department of Pneumoconiosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Xu X, Li Y, Niu Z, Xia J, Dai K, Wang C, Yao W, Guo Y, Deng X, He J, Deng M, Si H, Hao C. Inhibition of HIF-1α Attenuates Silica-Induced Pulmonary Fibrosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116775. [PMID: 35682354 PMCID: PMC9180362 DOI: 10.3390/ijerph19116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022]
Abstract
Background: Excessive accumulation of extracellular matrix is a key feature of pulmonary fibrosis (PF), and myofibroblasts are the main producers of extracellular matrix. Fibroblasts are the major source of myofibroblasts, but the mechanisms of transdifferentiation are unclear. Methods: In vitro, transforming growth factor-β1 was used to induce NIH-3T3 cell transdifferentiation. DMOG was used to increase hypoxia-inducible factor-1α subunit (HIF-1α) expression. KC7F2 and siRNA decreased HIF-1α expression. In vivo, silica particles were used to induce PF in C57BL/6N mice, and KC7F2 was used to reduce HIF-1α expression in C57BL/6N mice. Western blot was used to detect the expression of collagen type 1 alpha 1(COL1A1), α-smooth muscle actin (α-SMA), SMAD family member (SAMD) 3, Phospho-SMAD3 (PSMAD3), and HIF-1α. PCR was used to detect the expression of COL1A1, α-SMA, and HIF-1α. Immunohistochemistry was used to detect the expression of COL1A1 and HIF-1α. Results: In vitro, compared to the control group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression were elevated in the DMOG group, and COL1A1, α-SMA, PSMAD3, and HIF-1α expression were decreased in the KC7F2 group and siRNA group. Compared to the DMOG group, COL1A1, α-SMA, and PSMAD3 expression were decreased in the DMOG + SIS3 group. In vivo, compared to the saline group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression were increased in the pulmonary tissue of C57BL/6N mice in the silica group. Compared to the silica group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression and the degree of PF were decreased in the silica + KC7F2 group. Conclusion: Inhibition of HIF-1α reduced α-SMA, decreased COL1A1 expression, and attenuated the degree of PF in C57BL/6N mice. Therefore, HIF-1α may be a new target for the treatment of silica-induced PF.
Collapse
|
4
|
Song MY, Wang JX, Sun YL, Han ZF, Zhou YT, Liu Y, Fan TH, Li ZG, Qi XM, Luo Y, Yang PR, Li BC, Zhang XR, Wang J, Wang C. Tetrandrine alleviates silicosis by inhibiting canonical and non-canonical NLRP3 inflammasome activation in lung macrophages. Acta Pharmacol Sin 2022; 43:1274-1284. [PMID: 34417574 PMCID: PMC9061833 DOI: 10.1038/s41401-021-00693-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
Silicosis caused by inhalation of silica particles leads to more than ten thousand new occupational exposure-related deaths yearly. Exacerbating this issue, there are currently few drugs reported to effectively treat silicosis. Tetrandrine is the only drug approved for silicosis treatment in China, and despite more than decades of use, its efficacy and mechanisms of action remain largely unknown. Here, in this study, we established silicosis mouse models to investigate the effectiveness of tetrandrine of early and late therapeutic administration. To this end, we used multiple cardiopulmonary function test, as well as markers for inflammation and fibrosis. Moreover, using single cell RNA sequencing and transcriptomics of lung tissue and quantitative microarray analysis of serum from silicosis and control mice, our results provide a novel description of the target pathways for tetrandrine. Specifically, we found that tetrandrine attenuated silicosis by inhibiting both the canonical and non-canonical NLRP3 inflammasome pathways in lung macrophages. Taken together, our work showed that tetrandrine yielded promising results against silicosis-associated inflammation and fibrosis and further lied the groundwork for understanding its molecular targets. Our results also facilitated the wider adoption and development of tetrandirne, potentially accelerating a globally accepted therapeutic strategy for silicosis.
Collapse
Affiliation(s)
- Mei-yue Song
- grid.24695.3c0000 0001 1431 9176Beijing University of Chinese Medicine, Beijing, 100029 China ,grid.415954.80000 0004 1771 3349Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029 China ,grid.415954.80000 0004 1771 3349National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Jia-xin Wang
- grid.12527.330000 0001 0662 3178Tsinghua-Peking Center for Life Sciences, Department of Biology, College of Medicine, Tsinghua University, Beijing, 100084 China
| | - You-liang Sun
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhi-fa Han
- grid.12527.330000 0001 0662 3178Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Yi-tian Zhou
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Peking Union Medical College, MD Program, Beijing, 100730 China
| | - Ying Liu
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730 China
| | - Tian-hui Fan
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730 China
| | - Zhao-guo Li
- grid.412463.60000 0004 1762 6325Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086 China
| | - Xian-mei Qi
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730 China
| | - Ya Luo
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730 China
| | - Pei-ran Yang
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730 China
| | - Bai-cun Li
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730 China
| | - Xin-ri Zhang
- grid.452461.00000 0004 1762 8478Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001 China
| | - Jing Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730, China.
| | - Chen Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
What is a Therapeutic Potential of N-Acetylcysteine in Lung Silicosis? ACTA MEDICA MARTINIANA 2021. [DOI: 10.2478/acm-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Lung silicosis is a serious pulmonary disease caused by an exposure of lung to inhaled silicon dioxide (SiO2) or silica. Although pathomechanisms of the disease have not been fully elucidated, oxidative stress has been recognized as a fundamental factor triggering a fibrotizing inflammation leading to irreversible changes in lung tissue. Based on this knowledge, therapeutic potential of various antioxidants has been intensively discussed. Among them, N-acetylcysteine with its multiple anti-inflammatory and antioxidant actions and a long-term experience with its clinical use in various diseases appears as a very promising choice. The purpose of this article is to review the therapeutic effects of N-acetylcysteine particularly in relation to a lung injury and to point out a potential of N-acetylcysteine in the treatment of lung silicosis.
Collapse
|
6
|
Kolomaznik M, Mikolka P, Hanusrichterova J, Kosutova P, Matasova K, Mokra D, Calkovska A. N-Acetylcysteine in Mechanically Ventilated Rats with Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome: The Effect of Intravenous Dose on Oxidative Damage and Inflammation. Biomedicines 2021; 9:biomedicines9121885. [PMID: 34944701 PMCID: PMC8698392 DOI: 10.3390/biomedicines9121885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Treatment of acute respiratory distress syndrome (ARDS) is challenging due to its multifactorial aetiology. The benefit of antioxidant therapy was not consistently demonstrated by previous studies. We evaluated the effect of two different doses of intravenous (i.v.) N-acetylcysteine (NAC) on oxidative stress, inflammation and lung functions in the animal model of severe LPS-induced lung injury requiring mechanical ventilation. Adult Wistar rats with LPS (500 μg/kg; 2.2 mL/kg) were treated with i.v. NAC 10 mg/kg (NAC10) or 20 mg/kg (NAC20). Controls received saline. Lung functions, lung oedema, total white blood cell (WBC) count and neutrophils count in blood and bronchoalveolar lavage fluid, and tissue damage in homogenized lung were evaluated. NAC significantly improved ventilatory parameters and oxygenation, reduced lung oedema, WBC migration and alleviated oxidative stress and inflammation. NAC20 in comparison to NAC10 was more effective in reduction of oxidative damage of lipids and proteins, and inflammation almost to the baseline. In conclusion, LPS-instilled and mechanically ventilated rats may be a suitable model of ARDS to test the treatment effects at organ, systemic, cellular and molecular levels. The results together with literary data support the potential of NAC in ARDS.
Collapse
Affiliation(s)
- Maros Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (P.K.)
| | - Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
| | - Petra Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (P.K.)
| | - Katarina Matasova
- Clinic of Neonatology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and Martin University Hospital, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
- Correspondence: ; Tel.: +421-43-2633-411
| |
Collapse
|
7
|
Adamcakova J, Mokra D. New Insights into Pathomechanisms and Treatment Possibilities for Lung Silicosis. Int J Mol Sci 2021; 22:ijms22084162. [PMID: 33920534 PMCID: PMC8072896 DOI: 10.3390/ijms22084162] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Inhalation of silica particles is an environmental and occupational cause of silicosis, a type of pneumoconiosis. Development of the lung silicosis is a unique process in which the vicious cycle of ingestion of inhaled silica particles by alveolar macrophages and their release triggers inflammation, generation of nodular lesions, and irreversible fibrosis. The pathophysiology of silicosis is complex, and interactions between the pathomechanisms have not been completely understood. However, elucidation of silica-induced inflammation cascades and inflammation-fibrosis relations has uncovered several novel possibilities of therapeutic targeting. This article reviews new information on the pathophysiology of silicosis and points out several promising treatment approaches targeting silicosis-related pathways.
Collapse
|
8
|
Heister PM, Poston RN. Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol Res Perspect 2020; 8:e00653. [PMID: 32930523 PMCID: PMC7503088 DOI: 10.1002/prp2.653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022] Open
Abstract
More than ten million patients worldwide have been diagnosed with coronavirus disease 19 (COVID-19) to date (WHO situation report, 1st July 2020). There is no vaccine to prevent infection with the causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nor a cure. In the struggle to devise potentially useful therapeutics in record time, the repurposing of existing compounds is a key route of action. In this hypothesis paper, we argue that the bisbenzylisoquinoline and calcium channel blocker tetrandrine, originally extracted from the plant Stephania tetrandra and utilized in traditional Chinese medicine, may have potential in the treatment of COVID-19 and should be further investigated. We collate and review evidence for tetrandrine's putative mechanism of action in viral infection, specifically its recently discovered antagonism of the two-pore channel 2 (TPC2). While tetrandrine's particular history of use provides a very limited pharmacological dataset, there is a suggestion from the available evidence that it could be effective at doses used in clinical practice. We suggest that further research to investigate this possibility should be conducted.
Collapse
|
9
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
10
|
Anticancer Activity of Tetrandrine by Inducing Apoptosis in Human Breast Cancer Cell Line MDA-MB-231 In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6823520. [PMID: 32714412 PMCID: PMC7345956 DOI: 10.1155/2020/6823520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023]
Abstract
Tetrandrine (TET) is an alkaloid extracted from a traditional Chinese medicinal plant. It exerts remarkable anticancer activity and induces apoptotic cell death in various human cancer cells. The present study aimed to investigate the effects of TET on the inhibition of tumor growth and the induction of apoptosis in MDA-MB-231 breast cancer in xenograft mice. Tumor weight and volume were measured. The histopathological changes in the tumor tissue were observed. Immunohistochemistry analysis of Bcl-2-associated X protein (Bax) and B-cell lymphoma/leukemia-2 (Bcl-2) was carried out. The expression of apoptosis-associated genes and proteins, such as cysteine aspartic acid-specific protease-3 (Caspase-3), Survivin, Bax, Bcl-2, BH3-interacting domain death agonist (Bid), and poly ADP-ribose polymerase (PARP), was measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. TET inhibited tumor growth and induced apoptosis in TNBC cell line MDA-MB-231. The mechanism underlying this effect might be mediated by TET-upregulated Caspase-3, Bax, and Bid and downregulated by Bcl-2, Survivin, and PARP. Taken together, this study supported the fact that TET is a promising therapeutic agent for the treatment of TNBC, thereby providing experimental evidence for its use in the treatment of breast cancer.
Collapse
|