1
|
Seo SH, Lee JE, Ham DW, Shin EH. Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes. PARASITES, HOSTS AND DISEASES 2024; 62:30-41. [PMID: 38443768 PMCID: PMC10915271 DOI: 10.3347/phd.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.
Collapse
Affiliation(s)
- Seung-Hwan Seo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Ji-Eun Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Institute of Endemic Diseases, Seoul 03080,
Korea
- Seoul National University Bundang Hospital Medical Science, Seongnam 13620,
Korea
| |
Collapse
|
2
|
Mei Y, Li X, He C, Zhang Y, Kong W, Xue R, Huang X, Shi Y, Tao G, Xing M, Wang X. Detrimental Role of CXCR3 in α-Naphthylisothiocyanate- and Triptolide-Induced Cholestatic Liver Injury. Chem Res Toxicol 2024; 37:42-56. [PMID: 38091573 DOI: 10.1021/acs.chemrestox.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The chemokine receptor CXCR3 is functionally pleiotropic, not only recruiting immune cells to the inflamed liver but also mediating the pathological process of cholestatic liver injury (CLI). However, the mechanism of its involvement in the CLI remains unclear. Both alpha-naphthylisothiocyanate (ANIT) and triptolide are hepatotoxicants that induce CLI by bile acid (BA) dysregulation, inflammation, and endoplasmic reticulum (ER)/oxidative stress. Through molecular docking, CXCR3 is a potential target of ANIT and triptolide. Therefore, this study aimed to investigate the role of CXCR3 in ANIT- and triptolide-induced CLI and to explore the underlying mechanisms. Wild-type mice and CXCR3-deficient mice were administered with ANIT or triptolide to compare CLI, BA profile, hepatic recruitment of IFN-γ/IL-4/IL-17+CD4+T cells, IFN-γ/IL-4/IL-17+iNKT cells and IFN-γ/IL-4+NK cells, and the expression of ER/oxidative stress pathway. The results showed that CXCR3 deficiency ameliorated ANIT- and triptolide-induced CLI. CXCR3 deficiency alleviated ANIT-induced dysregulated BA metabolism, which decreased the recruitment of IFN-γ+NK cells and IL-4+NK cells to the liver and inhibited ER stress. After triptolide administration, CXCR3 deficiency ameliorated dysregulation of BA metabolism, which reduced the migration of IL-4+iNKT cells and IL-17+iNKT cells and reduced oxidative stress through inhibition of Egr1 expression and AKT phosphorylation. Our findings suggest a detrimental role of CXCR3 in ANIT- and triptolide-induced CLI, providing a promising therapeutic target and introducing novel mechanisms for understanding cholestatic liver diseases.
Collapse
Affiliation(s)
- Yuan Mei
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Chao He
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London WC1E 6BT, U.K
| | - Weichao Kong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yaxiang Shi
- Department of Gastroenterology, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang 212003, China
| | - Gang Tao
- Department of Gastroenterology, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang 212003, China
| | - Mengtao Xing
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Ullah A, Ud Din A, Ding W, Shi Z, Pervaz S, Shen B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev Endocr Metab Disord 2023; 24:611-631. [PMID: 37000372 PMCID: PMC10063956 DOI: 10.1007/s11154-023-09800-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases (such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
Collapse
Affiliation(s)
- Amin Ullah
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Wen Ding
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated hospital, Chengdu University, 610106, Chengdu, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wang W, Liu X, Wei P, Ye F, Chen Y, Shi L, Zhang X, Li J, Lin S, Yang X. SPP1 and CXCL9 Promote Non-alcoholic Steatohepatitis Progression Based on Bioinformatics Analysis and Experimental Studies. Front Med (Lausanne) 2022; 9:862278. [PMID: 35514751 PMCID: PMC9063562 DOI: 10.3389/fmed.2022.862278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide, and non-alcoholic steatohepatitis (NASH) is one of its pathological subtypes. The pathogenesis of NASH has not yet been fully elucidated. The purpose of this study was to identify the hub genes and pathways involved in NASH using bioinformatics methods. The hub genes were confirmed in human and animal models. Materials and Methods Three Gene Expression Omnibus (GEO) datasets (GSE48452, GSE58979, and GSE151158) of NASH patients and healthy controls were included in the study. We used GEO2R to identify differentially expressed genes (DEGs) between NASH patients and healthy controls. Functional enrichment analyses were then performed to explore the potential functions and pathways of the DEGs. In all DEGs, only two genes were highly expressed in NASH patients throughout the three datasets; these two genes, SPP1 and CXCL9, were further studied. Serum and liver tissues from NASH patients and healthy controls were collected. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured in NASH patients and healthy controls. Liver tissues were stained with hematoxylin and eosin. Immunohistochemical staining was used to evaluate the expression levels of the two genes in liver tissues. Male C57BL/6J mice were fed a methionine choline-deficient (MCD) diet for 8 weeks, after which serum ALT and AST levels were measured and liver tissues were stained. Results SPP1 and CXCL9 were the hub genes detected in the three datasets. “Lipid metabolism,” “inflammatory response,” and “lymphocyte activation” were the most significant biological functions in GSE48452, GSE58979, and GSE151158, respectively. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the toll-like receptor signaling pathway was significantly enriched in NASH patients. Serum ALT and AST levels were significantly increased in NASH patients compared to healthy controls. Liver tissues had more serious steatosis, hepatocyte ballooning degeneration, and lobular inflammatory infiltration, and the expression of SPP1 and CXCL9 in liver cells was significantly upregulated in NASH patients compared to healthy controls. MCD diet mice were consistent with NASH patients. Conclusion SPP1 and CXCL9 may play important roles in NASH pathogenesis and could be potential therapeutic targets and biomarkers of NASH in the future. Further experimental studies are needed to confirm our results.
Collapse
Affiliation(s)
- Wen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peiyao Wei
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunru Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shumei Lin
| | - Xueliang Yang
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Xueliang Yang
| |
Collapse
|
5
|
Li M, Luo Q, Tao Y, Sun X, Liu C. Pharmacotherapies for Drug-Induced Liver Injury: A Current Literature Review. Front Pharmacol 2022; 12:806249. [PMID: 35069218 PMCID: PMC8766857 DOI: 10.3389/fphar.2021.806249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) has become a serious public health problem. For the management of DILI, discontinuation of suspicious drug or medicine is the first step, but the treatments including drugs and supporting approaches are needed. Reference to clinical patterns and disease severity grades of DILI, the treatment drugs were considered to summarize into hepatoprotective drugs (N-acetylcysteine and Glutathione, Glycyrrhizin acid preparation, Polyene phosphatidylcholine, Bicyclol, Silymarin), anticholestatic drug (Ursodeoxycholic acid, S-adenosylmethionine, Cholestyramine), immunosuppressants (Glucocorticoids) and specific treatment agents (L-carnitine, Anticoagulants). The current article reviewed the accumulated literature with evidence-based medicine researches for DILI in clinical practice. Also the drawbacks of the clinical studies involved in the article, unmet needs and prospective development for DILI therapy were discussed.
Collapse
Affiliation(s)
- Meng Li
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Luo
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
- Shanghai Innovation Center of TCM Health Service, Shanghai, China
| |
Collapse
|