1
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
2
|
Bhat MA, Dhaneshwar S. Neurodegenerative Diseases: New Hopes and Perspectives. Curr Mol Med 2024; 24:1004-1032. [PMID: 37691199 DOI: 10.2174/1566524023666230907093451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and Friedrich ataxia are all incurable neurodegenerative diseases defined by the continuous progressive loss of distinct neuronal subtypes. Despite their rising prevalence among the world's ageing population, fewer advances have been made in the concurrent massive efforts to develop newer drugs. Recently, there has been a shift in research focus towards the discovery of new therapeutic agents for neurodegenerative diseases. In this review, we have summarized the recently developed therapies and their status in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Aadil Bhat
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, UP, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Yang H, Liang J, Li X, Yan L, Zhang Y. Inhibition of lincRNA-Cox2 alleviates apoptosis and inflammatory injury of lipopolysaccharide-stimulated human bronchial epithelial cells via the Nrf2/HO-1 axis. J Clin Biochem Nutr 2023; 72:234-241. [PMID: 37251964 PMCID: PMC10209602 DOI: 10.3164/jcbn.22-102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023] Open
Abstract
This study mainly explored the role and mechanism of lincRNA-Cox2 in inflammatory injury of human bronchial epithelial cells. BEAS-2B cells were stimulated with lipopolysaccharide to establish an in vitro inflammatory injury model. Real-time polymerase chain reaction was used to detect lincRNA-Cox2 expression in LPS-stimulated BEAS-2B. Cell viability and apoptosis of cells were assessed using CCK-8 and Annexin V-PI double staining. The contents of inflammatory factors were determined by enzyme-linked immunosorbent assay kits. The protein levels of nuclear factor erythrocyte 2-related factor 2 and haem oxygenase 1 protein levels were measured by Western blot. The results showed that lincRNA-Cox2 was upregulated in LPS-stimulated BEAS-2B cells. lincRNA-Cox2 knockdown inhibited apoptosis and the release of tumour necrosis factor alpha, interleukin 1beta (IL-1β), IL-4, IL-5, and IL-13 in BEAS-2B cells. lincRNA-Cox2 overexpression had the opposite effect. lincRNA-Cox2 knockdown also inhibited LPS-induced oxidative damage in BEAS-2B cells. Further mechanistic studies showed that inhibition of lincRNA-Cox2 upregulated the levels of Nrf2 and HO-1, and si-Nrf2 reversed the effects of si-lincRNA-Cox2. In conclusion, lincRNA-Cox2 knockdown inhibited BEAS-2B apoptosis and the level of inflammatory factors by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| | - Jing Liang
- Department of Children Healthcare, Xi’an Fourth Hospital, Xi’an, Shaanxi 710004, China
| | - Xiangni Li
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| | - Liping Yan
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| | - Yi Zhang
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| |
Collapse
|
4
|
Korean Red Ginseng Ameliorates Allergic Asthma through Reduction of Lung Inflammation and Oxidation. Antioxidants (Basel) 2022; 11:antiox11081422. [PMID: 35892624 PMCID: PMC9331112 DOI: 10.3390/antiox11081422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Six-year-old red ginseng, which is processed from the whole ginseng root via steaming and drying, has been shown to have preventive effects such as antioxidative, anti-inflammatory, and immunomodulatory. In this study, we evaluated the therapeutic effects of Korean red ginseng (KRG) against ovalbumin (OVA)-induced allergic asthma and the underlying mechanisms involved. We injected 20 µg of OVA on days 0 and 14, and mice were challenged with aerosolized OVA via a nebulizer for 1 h on days 21, 22, and 23. KRG was administered at 100 and 300 mg/kg from days 18 to 23. The KRG-treated mice showed significant reductions in their airway hyperresponsiveness, production of reactive oxygen species (ROS), and the number of inflammatory cells compared with the OVA-treated mice. The levels of type 2 cytokines in the bronchoalveolar lavage fluid and expression of OVA-specific immunoglobulin E in the serum, which were elevated in the OVA group, were reduced in the KRG-treated groups. The pro-inflammatory factors, inducible nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells, were downregulated by the KRG administration in a dose-dependent manner. KRG effectively suppressed the inflammatory response by inhibiting ROS production. Our results suggest that KRG may have the potential to alleviate asthma.
Collapse
|
5
|
Cha SJ, Kim K. Effects of the Edaravone, a Drug Approved for the Treatment of Amyotrophic Lateral Sclerosis, on Mitochondrial Function and Neuroprotection. Antioxidants (Basel) 2022; 11:antiox11020195. [PMID: 35204078 PMCID: PMC8868074 DOI: 10.3390/antiox11020195] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Edaravone, the first known free radical scavenger, has demonstrated cellular protective properties in animals and humans. Owing to its antioxidant activity, edaravone modulates oxidative damage in various diseases, especially neurodegenerative diseases. In 2015, edaravone was approved in Japan to treat amyotrophic lateral sclerosis. The distinguishing pathogenic features of neurodegenerative diseases include high reactive oxygen species levels and mitochondrial dysfunction. However, the correlation between mitochondria and edaravone has not been elucidated. This review highlights recent studies on novel therapeutic perspectives of edaravone in terms of its effect on oxidative stress and mitochondrial function.
Collapse
Affiliation(s)
- Sun Joo Cha
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Kiyoung Kim
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
- Correspondence: ; Tel.: +82-41-413-5024; Fax: +82-41-413-5006
| |
Collapse
|
6
|
Cimicifugae Rhizoma Extract Attenuates Oxidative Stress and Airway Inflammation via the Upregulation of Nrf2/HO-1/NQO1 and Downregulation of NF-κB Phosphorylation in Ovalbumin-Induced Asthma. Antioxidants (Basel) 2021; 10:antiox10101626. [PMID: 34679759 PMCID: PMC8533435 DOI: 10.3390/antiox10101626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Cimicifugae Rhizoma has been used as a medicinal herb for fever, pain, and inflammation in East Asia. We conducted this study because the effect of Cimicifugae Rhizoma extract (CRE) on allergic asthma has not yet been evaluated. To induce allergic airway inflammation, we intraperitoneally injected ovalbumin (OVA) mixed with aluminum hydroxide into mice twice at intervals of 2 weeks (Days 0 and 14) and then inhaled them thrice with 1% OVA solution using a nebulizer (Days 21 to 23). CRE (30 and 100 mg/kg) was administered orally daily for 6 days (Days 18 to 23). The mice showed remarkable reduction in allergic inflammation at 100 mg/kg of CRE, as evidenced by decreased inflammatory cell counts, pro-inflammatory cytokine levels, OVA-specific immunoglobulin E level, airway hyperresponsiveness, and production of mucus. Additionally, these effects were involved with the enhancement of heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase (NQO1), and nuclear factor erythroid 2-related factor 2 (Nrf2) expression and reduction of nuclear factor-κB (NF-κB) phosphorylation and matrix metalloproteinase-9 expression. Our findings indicated that CRE effectively protected against OVA-induced inflammation and oxidative stress via upregulation of the Nrf2/HO-1/NQO1 signaling and downregulation of NF-κB phosphorylation in asthma caused by OVA.
Collapse
|
7
|
An Update on the Role of Nrf2 in Respiratory Disease: Molecular Mechanisms and Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22168406. [PMID: 34445113 PMCID: PMC8395144 DOI: 10.3390/ijms22168406] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor erythroid 2-related factor (Nrf2) is a transcriptional activator of the cell protection gene that binds to the antioxidant response element (ARE). Therefore, Nrf2 protects cells and tissues from oxidative stress. Normally, Kelch-like ECH-associated protein 1 (Keap1) inhibits the activation of Nrf2 by binding to Nrf2 and contributes to Nrf2 break down by ubiquitin proteasomes. In moderate oxidative stress, Keap1 is inhibited, allowing Nrf2 to be translocated to the nucleus, which acts as an antioxidant. However, under unusually severe oxidative stress, the Keap1-Nrf2 mechanism becomes disrupted and results in cell and tissue damage. Oxide-containing atmospheric environment generally contributes to the development of respiratory diseases, possibly leading to the failure of the Keap1-Nrf2 pathway. Until now, several studies have identified changes in Keap1-Nrf2 signaling in models of respiratory diseases, such as acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma. These studies have confirmed that several Nrf2 activators can alleviate symptoms of respiratory diseases. Thus, this review describes how the expression of Keap1-Nrf2 functions in different respiratory diseases and explains the protective effects of reversing this expression.
Collapse
|
8
|
Liu GY, Zhang W, Chen XC, Wu WJ, Wan SQ. Diagnostic and Prognostic Significance of Keap1 mRNA Expression for Lung Cancer Based on Microarray and Clinical Information from Oncomine Database. Curr Med Sci 2021; 41:597-609. [PMID: 34169426 DOI: 10.1007/s11596-021-2378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
We performed a bioinformatics analysis with validation by multiple databases, aiming to evaluate the diagnostic and prognostic value of Kelch-like ECH-associated protein 1 (Keap1) mRNA for lung cancer, and to explore possible mechanisms. Diagnostic performance of Keap1 mRNA was determined by receiver operating characteristic (ROC) curve analysis. Prognostic implication of Keap1 mRNA was estimated by Kaplan-Meier survival analysis. Co-expressed genes with both Keap1 and Nfe2L2 were identified by LinkedOmics. Mechanisms of Keap1-Nfe2L2-co-expressed genes underlying the pathogenesis of lung cancer were explored by function enrichment and pathway analysis. The ROC curve analysis determined a good diagnostic performance of Keap1 mRNA for lung squamous cell carcinoma (LUSC), with an area under the ROC curve (AUC) of 0.833, sensitivity of 72.7%, and specificity of 90.6% (P<0.001). Multivariate Cox regression recognized high Keap1 mRNA to be an independent risk factor of mortality for overall lung cancer [hazard ratio (HR): 11.034, P=0.044], but an independent antagonistic factor for lung adenocarcinoma (LUAD) (HR: 0.404, P<0.001). Validation by UALCAN and GEPIA supported Oncomine findings regarding the diagnostic value of Keap1 mRNA for LUSC, but denied its prognostic value. After screening, we identified 17 co-expressed genes with both Keap1 and Nfe2L2 for LUAD, and 22 for LUSC, mainly enriched in signaling pathway of oxidative stress-induced gene expression via Nrf2. In conclusion, Keap1 mRNA has a good diagnostic performance, but controversial prognostic efficacy for LUSC. The pathogenesis of lung cancer is associated with Keap1-Nfe2L2-co-expressed genes by signaling pathway of oxidative stress-induced gene expression via Nrf2.
Collapse
Affiliation(s)
- Guang-Ya Liu
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Wei Zhang
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Xu-Chi Chen
- Department of Critical Care Medicine, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Wen-Juan Wu
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, China
| | - Shi-Qian Wan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Wuhan, 430023, China.
| |
Collapse
|
9
|
Luu Quoc Q, Cao Thi Bich T, Kim SH, Park HS, Shin YS. Administration of vitamin E attenuates airway inflammation through restoration of Nrf2 in a mouse model of asthma. J Cell Mol Med 2021; 25:6721-6732. [PMID: 34089243 PMCID: PMC8278095 DOI: 10.1111/jcmm.16675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence reveals that ROS is one of the key mediators that contribute to the development of asthma. Studies on antioxidants have shown to have beneficial effects on asthma management. However, we still do not know the precise mechanism, and the effects depend on age. This study was conducted to assess the levels of ROS and the effect of antioxidants in younger and older mice using an eosinophilic asthma model. We analyzed airway hyperresponsiveness (AHR), cytokines in bronchoalveolar lavage fluid (BALF), inflammatory cell counts, and the expression levels of NFκB, Nrf2, EPx, and EDN in the lung tissue, as well as the level of ROS in the lung tissue and BALF. The degree of eosinophilia and the levels of IL-5, ROS, and NFκB were significantly increased, whereas the endogenous levels of vitamin E and Nrf2 were decreased in the lung and BALF in the older mice compared to younger mice. The administration of vitamin E attenuated AHR, airway inflammation, and the level of IL-13 and ROS and enhanced the Nrf2 level in the older mice compared to the younger mice. Taken together, vitamin E treatment may have the therapeutic potential through restoration of the Nrf2 level, especially in elderly asthma.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Seo-Hee Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
10
|
Effect of Yijin-Tang, an Oriental Traditional Formula, on Allergic Responses Using an Ovalbumin-Induced Murine Asthma Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5585692. [PMID: 34055011 PMCID: PMC8133850 DOI: 10.1155/2021/5585692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Yijin-tang is an oriental traditional herb used to treat inflammatory diseases. In the present study, we investigated the protective effects of Yijin-tang water extract (YTE) using an ovalbumin- (OVA-) induced asthma model, focusing on the antioxidant and anti-inflammatory properties of the herb. BALB/c mice were intraperitoneally injected with OVA on days 0 and 14 and then challenged with OVA on days 21, 22, and 23. The animals were orally administered YTE (200 and 400 mg/kg) from days 18 to 23, and this was found to significantly decrease airway hyperresponsiveness and release of inflammatory cells, cytokines, and OVA-specific immunoglobulin E in mice with asthma. In addition, YTE was associated with a marked reduction in airway inflammation and mucus production in lung tissue of mice with asthma. Furthermore, YTE suppressed the expression of matrix metalloproteinase-9 and phosphorylation of ERK in the lungs, which in turn led to a reduction in inducible nitric oxide synthases and an elevation in reduced glutathione and heme oxygenase-1. In conclusion, YTE effectively suppressed allergic responses in mice with asthma and the effect was closely related to antioxidant and anti-inflammatory properties of the herb. Our results indicate that YTE may be a potential agent for the treatment of allergic asthma.
Collapse
|
11
|
Cho H, Shukla S. Role of Edaravone as a Treatment Option for Patients with Amyotrophic Lateral Sclerosis. Pharmaceuticals (Basel) 2020; 14:ph14010029. [PMID: 33396271 PMCID: PMC7823603 DOI: 10.3390/ph14010029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, is a progressive and fatal neurodegenerative disease that leads to a loss of muscle control due to nerve cells being affected in the brain and spinal cord. Some of the common clinical presentations of ALS include weakness of muscles, changes in behavior, dysfunction in speech, and cognitive difficulties. The cause of ALS is uncertain, but through several studies, it is known that mutations in SOD1 or C9orf72 genes could play a role as a factor of ALS. In addition, studies indicate that an excessive amount of free radicals, the reactive oxygen species (ROS), leads to neuronal damage by the peroxidation of unsaturated fatty acids in the neuronal cells. Edaravone, the newly approved antioxidant drug for ALS, halts the progression of ALS in the early stages through its cytoprotective effect and protects the nerves by reducing ROS. In this review, different aspects of ALS will be discussed, including its pathology, genetic aspect, and diagnosis. This review also focuses on edaravone as a treatment option for ALS, its mechanism of action, and its pharmacological properties. Clinical trials and adverse effects of edaravone and care for ALS patient are also discussed.
Collapse
|
12
|
Haines DD, Tosaki A. Heme Degradation in Pathophysiology of and Countermeasures to Inflammation-Associated Disease. Int J Mol Sci 2020; 21:ijms21249698. [PMID: 33353225 PMCID: PMC7766613 DOI: 10.3390/ijms21249698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The class of tetrapyrrol "coordination complexes" called hemes are prosthetic group components of metalloproteins including hemoglobin, which provide functionality to these physiologically essential macromolecules by reversibly binding diatomic gasses, notably O2, which complexes to ferrous (reduced/Fe(II)) iron within the heme porphyrin ring of hemoglobin in a pH- and PCO2-dependent manner-thus allowing their transport and delivery to anatomic sites of their function. Here, pathologies associated with aberrant heme degradation are explored in the context of their underlying mechanisms and emerging medical countermeasures developed using heme oxygenase (HO), its major degradative enzyme and bioactive metabolites produced by HO activity. Tissue deposits of heme accumulate as a result of the removal of senescent or damaged erythrocytes from circulation by splenic macrophages, which destroy the cells and internal proteins, including hemoglobin, leaving free heme to accumulate, posing a significant toxicogenic challenge. In humans, HO uses NADPH as a reducing agent, along with molecular oxygen, to degrade heme into carbon monoxide (CO), free ferrous iron (FeII), which is sequestered by ferritin protein, and biliverdin, subsequently metabolized to bilirubin, a potent inhibitor of oxidative stress-mediated tissue damage. CO acts as a cellular messenger and augments vasodilation. Nevertheless, disease- or trauma-associated oxidative stressors sufficiently intense to overwhelm HO may trigger or exacerbate a wide range of diseases, including cardiovascular and neurologic syndromes. Here, strategies are described for counteracting the effects of aberrant heme degradation, with a particular focus on "bioflavonoids" as HO inducers, shown to cause amelioration of severe inflammatory diseases.
Collapse
Affiliation(s)
- Donald David Haines
- Advanced Biotherapeutics, London W2 1EB, UK;
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-255586
| |
Collapse
|
13
|
Barajas-Carrillo VW, Estolano-Cobián A, Díaz-Rubio L, Ayllón-Gutiérrez RR, Salazar-Aranda R, Díaz-Molina R, García-González V, Almanza-Reyes H, Rivero IA, Marrero JG, Córdova-Guerrero I. Antioxidant and acetylcholinesterase inhibition activity of aliphatic and aromatic edaravone derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02667-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|