1
|
Guo J, Xu Y, Liu J, Hou X. The involvement of lidocaine in amyloid-β1-42-dependent mitochondrial dysfunction and apoptosis in hippocampal neurons via nerve growth factor-protein kinase B pathway. Neuroreport 2024; 35:1123-1132. [PMID: 39445521 DOI: 10.1097/wnr.0000000000002105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This project is conceived to reveal the role of lidocaine in the process of Alzheimer's disease (AD) and its possible downstream targets. After the employment of AD cell model in mice hippocampal neuronal HT-22 cells in the presence of amyloid-β1-42 (Aβ1-42), Cell Counting Kit-8 method investigated cell viability. Oxidative damage was assayed based on a dichloro-dihydro-fluorescein diacetate fluorescent probe and commercially available kits. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide fluorescent probe estimated mitochondrial function. Terminal-deoxynucleotidyl transferase mediated nick end labeling, western blotting, and immunofluorescence appraised the apoptotic level. Western blot also ascertained the alternations of nerve growth factors (NGF)-protein kinase B (Akt) pathway-related proteins. Aβ1-42 concentration dependently triggered the viability loss, oxidative damage, and apoptosis in HT-22 cells. Lidocaine promoted the viability and reduced the mitochondrial impairment and mitochondria-dependent apoptosis in Aβ1-42-treated HT-22 cells in a concentration-dependent manner. Besides, lidocaine activated the NGF-Akt pathway and NGF absence blocked NGF-Akt pathway, aggravated mitochondrial dysfunction as well as mitochondria-dependent apoptosis in lidocaine-administrated HT-22 cells in response to Aβ1-42. Altogether, these observations concluded that lidocaine might stimulate NGF-Akt pathway to confer protection against mitochondrial impairment and apoptosis in Aβ1-42-mediated cellular model of AD.
Collapse
Affiliation(s)
- Jianlian Guo
- Department of Surgical Anesthesiology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | | |
Collapse
|
2
|
Akkoca A, Büyükakıllı B, Ballı E, Gültekin B, Özbay E, Oruç Demirbağ H, Türkseven ÇH. Protective effect of MitoTEMPO against cardiac dysfunction caused by ischemia-reperfusion: MCAO stroke model study. Int J Neurosci 2024; 134:1582-1593. [PMID: 37862003 DOI: 10.1080/00207454.2023.2273768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE Neurological impairments are the leading cause of post-stroke mortality, while stroke-related cardiovascular diseases rank second in significance. This study investigates the potential protective effects of MitoTEMPO (2,2,6,6-tetramethyl-4-[[2-(triphenylphosphonio) acetyl] amino]-1-piperidinyloxy, monochloride, monohydrate), a mitochondria-specific antioxidant, against cardiac and neurological complications following stroke. The objective is to assess whether MitoTEMPO can be utilized as a protective agent for individuals with a high risk of stroke. MATERIALS AND METHODS Seventeen-week-old male Wistar Albino rats were randomly assigned to three groups: SHAM, ischemia-reperfusion and MitoTEMPO + ischemia-reperfusion (MitoTEMPO injection 0.7 mg/kg/day for 14 days). The SHAM group underwent a sham operation, while the ischemia-reperfusion group underwent 1-h middle cerebral artery occlusion followed by three days of reperfusion. Afterwards, noninvasive thoracic electrical bioimpedance and electrocardiography measurements were taken, and sample collection was performed for histological and biochemical examinations. RESULTS Our thoracic electrical bioimpedance and electrocardiography findings demonstrated that MitoTEMPO exhibited a protective effect on most parameters affected by ischemia-reperfusion compared to the SHAM group. Furthermore, our biochemical and histological data revealed a significant protective effect of MitoTEMPO against oxidative damage. CONCLUSIONS The findings suggest that both ischemia-reperfusion-induced cardiovascular abnormalities and the protective effect of MitoTEMPO may involve G-protein coupled receptor-mediated signaling mechanisms. This study was conducted with limitations including a single gender, a uniform age group, a specific stroke model limited to middle cerebral artery, and pre-scheduled only one ischemia-reperfusion period. In future studies, addressing these limitations may enable the implementation of preventive measures for individuals at high risk of stroke.
Collapse
Affiliation(s)
- Ahmet Akkoca
- Department of Occupational Health and Safety, Taşkent Vocational School, Selcuk University, Konya, Türkiye
| | - Belgin Büyükakıllı
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Ebru Ballı
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Burcu Gültekin
- Department of Histology and Embryology, Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Erkan Özbay
- Department of Medical Services and Techniques, Health Services Vocational School, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Hatice Oruç Demirbağ
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | | |
Collapse
|
3
|
Yu F, Wang G, Chen X, Zhang Y, Yang C, Hu H, Wei L. Luteolin alleviates cerebral ischemia/reperfusion injury by regulating cell pyroptosis. Open Med (Wars) 2024; 19:20241063. [PMID: 39507105 PMCID: PMC11538924 DOI: 10.1515/med-2024-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to clarify the roles and underlying mechanisms of luteolin in the progression of cerebral ischemia/reperfusion injury (CIRI). Methods A mouse model of CIRI was established using the middle cerebral artery occlusion (MCAO) method, after which luteolin was administered. Subsequently, neuronal apoptosis and pyroptosis were measured and the brain tissues of each group were subjected to RNA sequencing. Results Luteolin alleviated MCAO-induced brain infarction, apoptosis, and pyroptosis. RNA sequencing identified 3,379, 2,777, and 3,933 differentially expressed genes (DEGs) in the MCAO vs sham, MCAO vs MCAO + luteolin, and MCAO + luteolin vs sham groups, respectively. The identified DEGs showed enrichment in multiple processes, including pattern specification, forebrain development, anion transport, leukocyte migration, regulation of cell-cell adhesion, and positive regulation of the response to external stimuli, as well as the calcium, PI3K-AKT, JAK-STAT, NF-kappa B, IL-17, cAMP, cGMP-PKG, and Wnt signaling pathways. In addition, Ccl2 and Angpt2 interacted more with the other top 30 DEGs with high interaction weights. Finally, RT-qPCR results showed that MCAO induction significantly up-regulated the expression of Stoml3, Eomes, and Ms4a15 and down-regulated Nms, Ttr, and Avpr1a; however, luteolin could partially reverse the expression caused by MCAO. Conclusion Luteolin can alleviate brain infarction, apoptosis, and pyroptosis in CIRI, and may improve MCAO-induced CIRI by targeting the identified DEGs and their enriched pathways.
Collapse
Affiliation(s)
- Fei Yu
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xingyi Chen
- Department of Medical Department, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yanfei Zhang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Cheng Yang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Hu
- Department of Neurology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Liang Wei
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| |
Collapse
|
4
|
Liu N, Liang H, Hong Y, Lu X, Jin X, Li Y, Tang S, Li Y, Cao W. Gallic acid pretreatment mitigates parathyroid ischemia-reperfusion injury through signaling pathway modulation. Sci Rep 2024; 14:12971. [PMID: 38839854 PMCID: PMC11153493 DOI: 10.1038/s41598-024-63470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.
Collapse
Affiliation(s)
- Nianqiu Liu
- Departments of Breast Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Hongmin Liang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuan Hong
- Departments of Laboratory, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xiaokai Lu
- Departments of Ultrasound, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xin Jin
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuting Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Shiying Tang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yihang Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Weihan Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China.
| |
Collapse
|
5
|
Kang T, Zhu L, Xue Y, Yang Q, Lei Q, Wang Q. Overexpression of olfactory receptor 78 ameliorates brain injury in cerebral ischaemia-reperfusion rats by activating Prkaca-mediated cAMP/PKA-MAPK pathway. J Cell Mol Med 2024; 28:e18366. [PMID: 38856956 PMCID: PMC11163950 DOI: 10.1111/jcmm.18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.
Collapse
Affiliation(s)
- Tao Kang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Lijuan Zhu
- Department of AnesthesiaShaanxi Provincial People's HospitalXi'anChina
| | - Yanli Xue
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qian Yang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qi Lei
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qianqian Wang
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
6
|
Li X, Yang H, Cheng J, Zhao H, Yan Y, Wang Q, Wang D, Wang G. Compound musk injection in the treatment of ischemic stroke: A network analysis of the mechanism of action. Medicine (Baltimore) 2023; 102:e36179. [PMID: 38013375 PMCID: PMC10681625 DOI: 10.1097/md.0000000000036179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) is affected by a wide range of factors and has certain treatment limitations. Studies have reported that compound musk injection (CMI) is effective in the treatment of IS, however, its mechanism of action is still unclear. METHODS The main active ingredients in CMI were retrieved from HERB, TCMSP and BATMAN databases, and the relevant targets were predicted by Swiss Target Prediction platform. MalaCards, OMIM, DrugBank, DisGeNET, Genecards and TTD databases were used to obtain the genes related to IS. The intersection of drugs and disease targets was used to construct protein-protein interaction networks, and gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. AutoDock Vina software was used for molecular docking, and cell experiments were conducted to verify the results. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression level of relative mRNA in cells. RESULTS Network analysis and molecular docking results showed that the key targets of CMI in the treatment of IS were SRC, TP53, PIK3R1, MAPK3, PIK3CA, MAPK1, etc. KEGG pathway enrichment analysis mainly involved PI3K/Akt signaling pathway, Rap1 signaling pathway and MAPK signaling pathway. The molecular docking results all showed that the key ingredients were strong binding activity with the key targets. The quantitative RT-PCR results indicated that CMI may increase the expression of PIK3CA, MAPK3 mRNA and decrease the expression of SRC mRNA. CONCLUSIONS CMI can treat IS by regulating pathways and targets related to inflammatory response and apoptosis in a multi-component manner.
Collapse
Affiliation(s)
- Xiaoqing Li
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Hua Yang
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| | - Jianjie Cheng
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| | - Hairong Zhao
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Ya Yan
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Qian Wang
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Dexiao Wang
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Guangming Wang
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| |
Collapse
|
7
|
Huo K, Xu J, Wei M, Ma K, Wang J, Han J. Solasonine ameliorates cerebral ischemia-reperfusion injury via suppressing TLR4/MyD88/NF-κB pathway and activating AMPK/Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 124:110862. [PMID: 37672972 DOI: 10.1016/j.intimp.2023.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Solasonine (SS), the main active ingredient of Solanum nigrum L., has been reported to possess a variety of pharmacological properties. A recent study demonstrated a neuroprotective effect of SS in a mouse nerve injury model. However, its protective effects on cerebral ischemia/reperfusion injury (CIRI) remain to be elucidated. We investigated herein the in vitro and in vivo neuroprotective effects of SS. Primary hippocampal neurons were exposed to oxygen and glucose deprivation/reoxygenation (OGD/R) to construct an in vitro model while rats were treated with middle cerebral artery occlusion/reperfusion (MCAO/R) to establish an in vivo CIRI model. The results showed that SS reduced OGD/R-induced inflammatory responses of neurons by blocking secretion of TNF-α, IL-1β and IL-6. Moreover, SS ameliorated OGD/R-induced oxidative stress in neurons by decreasing the level of ROS and MDA and increasing the activity of SOD and GPx. We also found that SS protected neurons from OGD/R-induced apoptosis by down-regulating bax and cleaved caspase-3 and up-regulating bcl-2. The in vivo results revealed that SS administration reduced the infarct volume and alleviated the neurological deficit of MCAO/R rats as well as diminished neuronal damages in these rats. Our investigation on the underlying mechanisms indicated that the neuroprotective effect of SS on CIRI may be associated with the TLR4/MyD88/NF-κB and AMPK/Nrf2/HO-1 pathways. Taken together, these findings demonstrate that SS ameliorates CIRI via suppressing TLR4/MyD88/NF-κB pathway and activating AMPK/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kang Huo
- Deartment of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China; Center of Brain Health, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Jing Xu
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Meng Wei
- Deartment of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Kaige Ma
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi Province, PR China
| | - Jianyi Wang
- Deartment of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Jianfeng Han
- Deartment of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China.
| |
Collapse
|
8
|
Zhang H, Du D, Gao X, Tian X, Xu Y, Wang B, Yang S, Liu P, Li Z. PFT-α protects the blood-brain barrier through the Wnt/β-catenin pathway after acute ischemic stroke. Funct Integr Genomics 2023; 23:314. [PMID: 37777676 DOI: 10.1007/s10142-023-01237-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
The dysfunction of blood-brain barrier (BBB) plays a pivotal role in brain injury and subsequent neurological deficits of ischemic stroke. The current study aimed to examine the potential correlation between p53 inhibition and the neuroprotective effect of on the BBB. Rat middle cerebral artery occlusion and reperfusion model (MCAO/R) and oxygen-glucose deprivation/re-oxygenation model (OGD/R) were employed to simulate cerebral ischemia-reperfusion (CI/R) injury occurrence in vivo and in vitro. mNSS and TTC staining were applied to evaluate neurological deficits and brain infarct volumes. Evans blue (EB) staining was carried out to examine the permeability of BBB. RT-qPCR and Western blot to examine the mRNA and protein levels. Cell viabilities were detected by CCK-8. Flow cytometry and ELISA assay were employed to examine apoptosis and neuroinflammation levels. TEER value and sodium fluorescein were carried out to explore the permeability of HBMEC cells. PFT-α inhibited P53 and promoted the expression of β-catenin and cyclin D1, which were reversed by DKK1. PFT-α inhibited neurological deficits, brain infarct volume, neuroinflammation, apoptosis, and BBB integrity than the MCAO/R rats; however, this inhibition was reversed by DKK1. PFT-α promoted OGD/R-induced cell viability in NSCs, and suppressed inflammation and apoptosis, but DKK1 weakened the effect of PFT-α. PFT-α increased OGD/R-induced TEER values in cerebrovascular endothelial cells, inhibited sodium fluorescein permeability, and increased the mRNA levels of tight junction protein, but they were all attenuated by DKK1. PFT-α protects the BBB after acute ischemic stroke via the Wnt/β-catenin pathway, which in turn improves neurological function.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Deyong Du
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Xiaoning Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Xiaoling Tian
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Yongqiang Xu
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Bo Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Shoujuan Yang
- Department of Cardiology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| | - Pengfei Liu
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| | - Zefu Li
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| |
Collapse
|
9
|
Obi MF, Ubhi M, Namireddy V, Noel C, Sharma M, Campos FN, Garg Y. Malignant hyperthermia as a rare complication of local lidocaine injection: A case report. World J Anesthesiol 2023; 12:1-7. [DOI: 10.5313/wja.v12.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Malignant hyperthermia (MH) is a hypermetabolic disorder of skeletal muscles triggered by exposure to volatile anesthetics and depolarizing muscular relaxants. It manifests with clinical presentations such as tachycardia, muscle rigidity, hyperpyrexia, and rhabdomyolysis in genetically predisposed individuals with ryanodine receptor or calcium voltage-gated channel subunit alpha1 S mutations. Local anesthetics, such as lidocaine, are generally considered safe; however, complications can arise, albeit rarely. Lidocaine administration has been reported to induce hypermetabolic reactions resembling MH in susceptible individuals. The exact mechanism by which lidocaine might trigger MH is not fully understood. Although some mechanisms are postulated, further research is needed for a better understanding of this.
CASE SUMMARY We present the case of MH in a 43-year-old male patient with an unknown genetic predisposition following a lidocaine injection during a dental procedure. This case serves as a reminder that while the occurrence of lidocaine-induced MH is rare, lidocaine can still trigger this life-threatening condition. Therefore, caution should be exercised when administering lidocaine to individuals who may be susceptible to MH. It is important to note that prompt intervention played a crucial role in managing the patient’s symptoms. Upon recognizing the early signs of MH, aggressive measures were initiated, including vigorous intravenous normal saline administration and lorazepam. Due to the effectiveness of these interventions, the administration of dantrolene sodium, a specific antidote for MH, was deferred.
CONCLUSION This case highlighted the significance of vigilant monitoring and swift action in mitigating the detrimental effects of lidocaine-induced MH. Caution should be exercised when administering lidocaine to individuals who may be predisposed to MH. It is very important to be aware and vigilant of the signs and symptoms of MH as early recognition and treatment intervention are important to prevent serious complications to decrease mortality.
Collapse
Affiliation(s)
- Mukosolu Florence Obi
- Department of Internal Medicine, Wyckoff Heights Medical Center, New York, NY 11237, United States
| | - Manveer Ubhi
- Department of Internal Medicine, Wyckoff Heights Medical Center, New York, NY 11237, United States
| | - Vikhyath Namireddy
- Department of Medicine, St. Georges University School of Medicine, True Blue 38902, Grenada
| | - Chelsea Noel
- Department of Medicine, St. Georges University School of Medicine, True Blue 38902, Grenada
| | - Manjari Sharma
- Department of Internal Medicine, Wyckoff Heights Medical Center, New York, NY 11237, United States
| | - Frederick N Campos
- Department of Internal Medicine, Wyckoff Heights Medical Center, New York, NY 11237, United States
| | - Yash Garg
- Department of Internal Medicine, Wyckoff Heights Medical Center, New York, NY 11237, United States
| |
Collapse
|
10
|
Hung KC, Ho CN, Liu WC, Yew M, Chang YJ, Lin YT, Hung IY, Chen JY, Huang PW, Sun CK. Prophylactic effect of intravenous lidocaine against cognitive deficit after cardiac surgery: A PRISMA-compliant meta-analysis and trial sequential analysis. Medicine (Baltimore) 2022; 101:e30476. [PMID: 36107567 PMCID: PMC9439840 DOI: 10.1097/md.0000000000030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study aimed at providing an updated evidence of the association between intraoperative lidocaine and risk of postcardiac surgery cognitive deficit. METHODS Randomized clinical trials (RCTs) investigating effects of intravenous lidocaine against cognitive deficit in adults undergoing cardiac surgeries were retrieved from the EMBASE, MEDLINE, Google scholar, and Cochrane controlled trials register databases from inception till May 2021. Risk of cognitive deficit was the primary endpoint, while secondary endpoints were length of stay (LOS) in intensive care unit/hospital. Impact of individual studies and cumulative evidence reliability were evaluated with sensitivity analyses and trial sequential analysis, respectively. RESULTS Six RCTs involving 963 patients published from 1999 to 2019 were included. In early postoperative period (i.e., 2 weeks), the use of intravenous lidocaine (overall incidence = 14.8%) was associated with a lower risk of cognitive deficit compared to that with placebo (overall incidence = 33.1%) (relative risk = 0.49, 95% confidence interval: 0.32-0.75). However, sensitivity analysis and trial sequential analysis signified insufficient evidence to arrive at a firm conclusion. In the late postoperative period (i.e., 6-10 weeks), perioperative intravenous lidocaine (overall incidence = 37.9%) did not reduce the risk of cognitive deficit (relative risk = 0.99, 95% confidence interval: 0.84) compared to the placebo (overall incidence = 38.6%). Intravenous lidocaine was associated with a shortened LOS in intensive care unit/hospital with weak evidence. CONCLUSION Our results indicated a prophylactic effect of intravenous lidocaine against cognitive deficit only at the early postoperative period despite insufficient evidence. Further large-scale studies are warranted to assess its use for the prevention of cognitive deficit and enhancement of recovery (e.g., LOS).
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Chun-Ning Ho
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Wei-Cheng Liu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Ming Yew
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Ying-Jen Chang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Yao-Tsung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - I-Yin Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan city, Taiwan
| | - Ping-Wen Huang
- Department of Emergency Medicine, Show Chwan Memorial Hospital, Changhua city, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung city, Taiwan
- College of Medicine, I-Shou University, Kaohsiung city, Taiwan
- *Correspondence: Cheuk-Kwan Sun, Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan, No.1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (e-mail: )
| |
Collapse
|
11
|
Zhou Z, Ma J, Cai J, Chen A, Zhu L. Bioinformatic analysis of circular RNA expression profiles in a rat lumbosacral spinal root avulsion model. Front Genet 2022; 13:920493. [PMID: 36035170 PMCID: PMC9412201 DOI: 10.3389/fgene.2022.920493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Lumbosacral spinal root avulsion (LSRA) is a severe nerve injury that results in devastating dysfunction in the lower limb. Circular ribonucleic acids (circRNAs) have been reported to be implicated in a variety of diseases. However, the role of circRNAs in LSRA remains unclear. Here, we performed RNA sequencing (RNA-seq) to determine circRNA expression profiles in a rat LSRA model and further investigated their potential functions and the underlying mechanisms by bioinformatic analyses and in vitro experiments. In all, 1708 circRNAs were found to be differentially expressed in spinal cord tissues after LSRA (|fold change| ≥ 2 and p < 0.05), with 591 up-regulated 1117 down-regulated. Meanwhile, 2263 mRNAs were also indentified to be differentially expressed, of which 1471 were upregulated and 792 were downregulated. Eight randomly selected circRNAs and mRNA were successfully verified to be consistent the RNA-seq results by quantitative real-time polymerase chain reaction. Functional analyses based on gene ontology and Kyoto Encyclopedia of Genes and Genomes predicted the potential roles of differentially expressed circRNAs and mRNAs in LSRA, and circRNA/miRNA/mRNA interaction networks revealed that circRNA_7025, a down-regulated circRNA in LSRA, was targeted by two neuronal apoptosis-related miRNAs, rno-miR-1224 and rno-miR-326-5p. Further in vitro experiments revealed that circRNA_7025 protected against oxygen-glucose deprivation induced neuronal apoptosis via the circRNA_7025/miR-1224/miR-326-5p axis. In summary, our results revealed circRNA expression profiles and their potential functions in LSRA. These findings improve our understanding of the pathogenic mechanisms involved in LSRA and might enable us to identify new molecular targets for LSRA.
Collapse
Affiliation(s)
- Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jun Ma
- Department of Orthopaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Jiao Cai
- Department of Medical Administration, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Aimin Chen
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Aimin Chen, ; Lei Zhu,
| | - Lei Zhu
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Aimin Chen, ; Lei Zhu,
| |
Collapse
|
12
|
Wan D, Feng J, Wang P, Yang Z, Sun T. Hypoxia- and Inflammation-Related Transcription Factor SP3 May Be Involved in Platelet Activation and Inflammation in Intracranial Hemorrhage. Front Neurol 2022; 13:886329. [PMID: 35720085 PMCID: PMC9201407 DOI: 10.3389/fneur.2022.886329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
The purpose of this study was to identify the biomarkers implicated in the development of intracranial hemorrhage (ICH) and potential regulatory pathways. In the transcriptomic data for patients with ICH, we identified DEmiRNAs and DEmRNAs related to hypoxia, inflammation, and their transcription factors (TFs). An ICH-based miRNA-TF-mRNA regulatory network was thus constructed, and four biomarkers (TIMP1, PLAUR, DDIT3, and CD40) were screened for their association with inflammation or hypoxia by machine learning. Following this, SP3 was found to be a transcription factor involved in hypoxia and inflammation, which regulates TIMP1 and PLAUR. From the constructed miRNA-TF-mRNA regulatory network, we identified three axes, hsa-miR-940/RUNX1/TIMP1, hsa-miR-571/SP3/TIMP1, and hsa-miR-571/SP3/PLAUR, which may be involved in the development of ICH. Upregulated TIMP1 and PLAUR were validated in an independent clinical cohort 3 days after ICH onset. According to Gene Set Enrichment Analysis (GSEA), SP3 was discovered to be important in interleukin signaling and platelet activation for hemostasis. Transcription factor SP3 associated with hypoxia or inflammation plays an important role in development of ICH. This study provides potential targets for monitoring the severity of inflammation and hypoxia in patients with ICH.
Collapse
Affiliation(s)
- Ding Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Jin Feng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Zhenxing Yang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
- *Correspondence: Tao Sun
| |
Collapse
|
13
|
miR-542-3p-Targeted PDE4D Regulates cAMP/PKA Signaling Pathway and Improves Cardiomyocyte Injury. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7021200. [PMID: 35360268 PMCID: PMC8957470 DOI: 10.1155/2022/7021200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the protective effect of miR-542-3p on cardiomyocyte injury and related mechanisms. Methods A cardiomyocyte hypoxia/reoxygenation model was established. The expression levels of miR-542-3p and PDE4D were detected using qRT-PCR; the luciferase reporter assay system was used to detect the targeting relationship between miR-542-3p and PDE4D; overexpressing miR-542-3p was transfected into cardiomyocytes, and ROS release was detected by immunofluorescence while cellular apoptosis was detected by TUNEL; and the western blot assay was applied to detect the expression of PDE4D, phosphorylated protein kinase A (p-PKA), and phosphorylated cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB). Results Compared with the control group, the miR-542-3p expression level was decreased and the PDE4D expression level was increased in the cardiomyocyte hypoxia/reoxygenation model group. The dual-luciferase reporter assay system confirmed that miR-542-3p could target and regulate PDE4D; the transfection with cardiomyocytes using the overexpressing miR-542-3p could downregulate PDE4D expression, attenuate ROS release during cardiomyocyte injury, and reduce cellular apoptosis rate, while upregulating the expression of p-PKA and p-CREB. Conclusion The miR-542-3p can negatively regulate PDE4D protein expression and attenuate cardiomyocyte injury through a mechanism related to the activation of the cAMP/PKA signaling pathway.
Collapse
|
14
|
Ma X, Yan W, He N. Lidocaine attenuates hypoxia/reoxygenation‑induced inflammation, apoptosis and ferroptosis in lung epithelial cells by regulating the p38 MAPK pathway. Mol Med Rep 2022; 25:150. [PMID: 35244190 PMCID: PMC8941375 DOI: 10.3892/mmr.2022.12666] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022] Open
Abstract
Lung ischemia-reperfusion (I/R) injury poses a serious threat to human health, worldwide. The current study aimed to determine the role of lidocaine in A549 cells, in addition to the involvement of the p38 MAPK pathway. Oxygen deprivation/reoxygenation-induced A549 cells were utilized to simulate I/R injury in vitro. Cell viability and apoptosis were detected using MTT and TUNEL assays, respectively. The levels of IL-6, IL-8, TNF-α, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase, iron and reactive oxygen species (ROS) were measured using corresponding commercial kits. The corresponding protein expression levels were also measured using western blotting. Moreover, a monolayer cell paracellular permeability assay was performed to determine the permeability of A549 cells. The results demonstrated that, whilst lidocaine had no influence on untreated A549 cells, it significantly increased the viability of hypoxia/reoxygenation (H/R)-induced A549 cells. A549 cell apoptosis and the release of inflammatory cytokines in the H/R group were decreased after the addition of lidocaine. When compared with the H/R group, increased MDA level and decreased SOD level were observed in H/R-induced A549 cells following lidocaine treatment. In addition, the permeability of H/R-induced A549 cells was markedly decreased following lidocaine treatment. Compared with the H/R group, the expression levels of tight junction and ferroptosis-related proteins were significantly upregulated by lidocaine, whereas the expression of transferrin was downregulated. However, p79350, an agonist of p38, reversed the effects of lidocaine on H/R-induced A549 cells. In conclusion, lidocaine exerted a protective role in HR-induced lung epithelial cell injury, which may serve as a potential agent for the treatment of patients with lung I/R injury.
Collapse
Affiliation(s)
- Xiaojun Ma
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weihua Yan
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na He
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| |
Collapse
|
15
|
Refaie MM, El-Hussieny M, Abdel-Hakeem EA, Fawzy MA, Mahmoud Abd El Rahman ES, Shehata S. Phosphodiesterase inhibitor, Vinpocetine, guards against doxorubicin induced cardiotoxicity via modulation of HIF/VEGF and cGMP/cAMP/SIRT signaling pathways. Hum Exp Toxicol 2022; 41:096032712211362. [PMID: 36270296 DOI: 10.1177/09603271221136209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Purpose: Doxorubicin (DOX) is a widely used chemotherapeutic agent complicated with cardiotoxic adverse effects. Up till now, there are no researches discussing the role of vinpocetine (VIN) in DOX cardiotoxicity. Thus, the aim of our work was to study this effect and explore the different involved mechanisms. Methods: 50 male Wistar albino rats were subjected to DOX toxicity via administration of single i.p. Dose (15 mg/kg) on the 4th day with or without co-administration of VIN (10, 20, 30 mg/kg/day) orally for 5 days. Results: Our data revealed that VIN succeeded in protecting the heart against DOX induced damage as manifested by significant decrease of cardiac enzymes, hypoxia inducible factor alpha (HIF-1α), vascular endothelial growth factor-A (VEGF-A), tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α) and caspase3 levels. Furthermore, VIN given group showed marked improvement of the histopathological changes of cardiac injury, total antioxidant capacity (TAC), elevation of reduced glutathione (GSH), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP) and sirtuin-1 (SIRT-1). Conclusion: We concluded that VIN could ameliorate DOX induced cardiac damage and this effect may be attributed to modulation of HIF/VEGF signaling pathway, up-regulation of cGMP/cAMP/SIRT pathway, inhibition of phosphodiesterase enzyme, besides its anti-apoptotic, anti-inflammatory, and anti-oxidant properties.
Collapse
Affiliation(s)
- Marwa M.M. Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, Egypt
| | | | - Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Egypt
| | | | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, Egypt
| |
Collapse
|
16
|
Deng Y, Li RW, Yang YL, Weiss S, Smith PN. Pharmacological prevention of renal ischemia-reperfusion injury in a rat model. ANZ J Surg 2021; 92:518-525. [PMID: 34820987 DOI: 10.1111/ans.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Renal ischemia-reperfusion injury (IRI) can lead to significant morbidity and mortality. It remains a leading cause of acute kidney injury and is therefore an important issue in trauma and renal transplant surgery. Various pharmaceutical agents have been used in an attempt to dampen the harmful effects of IRI but few have been shown to be useful clinically. Riluzole, Lidocaine and Lamotrigine have been demonstrated to show anti-ischaemic properties in other organs; however, their use has not been tested in the kidneys. We investigated Riluzole, Lidocaine and Lamotrigine for their preventive effects of renal IRI using a rat model. METHODS Winstar rats (n = 48) were divided into four groups (n = 12 per group)-three treatment groups and one control group. Riluzole, Lidocaine and Lamotrigine were given prior to renal ischemia only (IO) or IRI. The degree of ischemia was measured by glutathione levels and a TUNEL assay was used to measure DNA fragmentation. RESULTS Riluzole, Lidocaine and Lamotrigine pre-treatment each resulted in statistically higher glutathione levels compared to controls (P = 0.002; P = 0.007 and P = 0.005, respectively). Riluzole and Lidocaine were also effective at preventing depletion of glutathione following IO (P = 0.007 and P = 0.014 respectively), while Lamotrigine was ineffective in IO (P = 0.71). The degree of DNA fragmentation seen on the TUNEL assay was markedly reduced in all three-drug groups in both IO and IRI. DISCUSSION Riluzole, Lidocaine and Lamotrigine all have anti-ischaemic effects in the rat kidney and can have potential therapeutic implications.
Collapse
Affiliation(s)
- Yi Deng
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Orthopaedic Surgery, Canberra Hospital, Yamba Drive, Garran, Australian Capital Territory, Australia
| | - Rachel W Li
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yong Liang Yang
- Department of Orthopaedics, Shandong Provincial Trauma and Orthopaedics Hospital, Jinan, China
| | - Steven Weiss
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paul N Smith
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Orthopaedic Surgery, Canberra Hospital, Yamba Drive, Garran, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Jiang Z, Chen S, Zhang L, Shen J, Zhong M. Potentially Functional microRNA-mRNA Regulatory Networks in Intestinal Ischemia-Reperfusion Injury: A Bioinformatics Analysis. J Inflamm Res 2021; 14:4817-4825. [PMID: 34584440 PMCID: PMC8464588 DOI: 10.2147/jir.s328732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background Intestinal ischemia-reperfusion (II/R) injury is a common clinical complication associated with high mortality, for which microRNA (miRNA) drives potentially its pathophysiological progression. MiRNAs regulate different messenger RNAs (mRNAs). However, the regulatory network between miRNAs and mRNAs in intestinal ischemia-reperfusion injury is elusive. Methods We analyzed the different expression of mRNAs and miRNAs in intestinal tissues from patients from three groups (arterial group (group A), venous group (group V), control group (group C)). Common differentially expressed (Co-DE) miRNAs and differentially expressed mRNAs were acquired via concerned analyses among the three groups. Co-DE mRNAs were shared parts of target mRNAs and differentially expression mRNAs. Cytoscape was employed to construct the regulatory network between miRNAs and mRNAs. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway depicted the functions and potential pathway associated with Co-DE mRNAs. Using the STRING and Cytoscape, we found critical mRNAs in the protein–protein interaction (PPI) network. Results The miRNA-mRNA network comprised 8 Co-DE miRNAs and 140 Co-DE mRNAs. Of note, 140 Co-DE mRNAs were targets of these 8 miRNAs, and their roles were established through the functional exploration via GO analysis and KEGG analysis. PPI network and Cytoscape revealed COL1A2, THY1, IL10, MMP2, SERPINH1, COL3A1, COL14A1, and P4HA1 as the top 8 key mRNAs. Conclusion This study has demonstrated a miRNA-mRNA regulatory network in intestinal ischemia-reperfusion injury, and explored the key mRNAs and their potential functions. These findings could provide new insight into prognostic markers and therapeutic targets for patients with intestinal ischemia-reperfusion injury in clinical practice.
Collapse
Affiliation(s)
- Zhifeng Jiang
- Department of Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Song Chen
- Division of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| | - Lin Zhang
- Department of Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Jie Shen
- Department of Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Ming Zhong
- Division of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Chen R, Chen T, Wang T, Dai X, Zhang S, Jiang D, Meng K, Wang Y, Geng T, Xu J, Zhou K, Wang Y. Tongmai Yangxin pill reduces myocardial No-reflow via endothelium-dependent NO-cGMP signaling by activation of the cAMP/PKA pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113462. [PMID: 33058924 DOI: 10.1016/j.jep.2020.113462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease. Previous studies have confirmed that TMYX can improve vascular endothelial function in patients with coronary heart disease by upregulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels remains unclear. AIM OF THE STUDY This study aimed to reveal whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels. The underlying cAMP/PKA and NO-cGMP signaling pathway-dependent mechanism is also explored. MATERIALS AND METHODS The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish the NR model. TMYX (4.0 g/kg) was orally administered throughout the experiment. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were used to evaluate the NR and ischemic areas. Pathological changes in the myocardium were assessed by hematoxylin-eosin staining. An automated biochemical analyzer and kit were used to detect the activities of myocardial enzymes and myocardial oxidants, including CK, CK-MB, LDH, reactive oxygen species, superoxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins related to the cAMP/PKA and NO/cGMP signaling pathways were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was used to detect coronary artery diastolic function in vitro. RESULTS TMYX elevated the EF, FS, LVOT peak, LVPWd and LVPWs values, decreased the LVIDd, LVIDs, LV-mass, IVSd, and LV Vols values, demonstrating cardio-protective effects, and reduced the NR and ischemic areas. Pathological staining showed that TMYX could significantly reduce inflammatory cell number and interstitial edema. The activities of CK, LDH, and MDA were reduced, NO activity was increased, and oxidative stress was suppressed after treatment with TMYX. TMYX not only enhanced the expression of Gs-α, AC, PKA, and eNOS but also increased the expression of sGC and PKG. Furthermore, TMYX treatment significantly decreased ROCK expression. We further showed that TMYX (25-200 mg/mL) relaxed isolated coronary microvessels. CONCLUSIONS TMYX attenuates myocardial NR after ischemia and reperfusion by activating the cAMP/PKA and NO/cGMP signaling pathways, further upregulating NO activity and relaxing coronary microvessels.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ting Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tianqi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shuying Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Di Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ke Meng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yanyan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tong Geng
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Research Institute Branch, Tianjin, 300457, China.
| | - Jinpeng Xu
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Drug Marketing Co., Ltd, Tianjin, 300193, China.
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
19
|
YE J, GONG H, WANG L, HUANG Z, QIU F, ZHONG X. [Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:705-713. [PMID: 33448173 PMCID: PMC10412414 DOI: 10.3785/j.issn.1008-9292.2020.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/16/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the regulatory effect of iridoid glycoside of radix scrophulariae (IGRS) on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model. METHODS Rat pheochromocytoma PC12 cells were pretreated with IGRS (50, 100, 200 μg/mL) for 24h, and the in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R) was applied. The cell viability was determined by MTT and lactate dehydrogenase (LDH) assay. The apoptotic rate was detected by flow cytometry. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), C/EBP homologous protein (CHOP), caspase-12 protein, and glucose-regulated protein-78(GRP78)were detected by Western blotting. The mRNA expression levels of sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), 1, 4, 5-triphosphate inositol receptor 1 (IP3R1), and ryanodine receptor 2 (RyR2)were detected by real-time RT-PCR. Free Ca2+ concentration [Ca2+]i was determined by using laser scanning confocal microscopy. RESULTS The damage caused by OGD/R to PC12 cells was significantly reduced by IGRS, with significant effect on increasing survival rate and reducing LDH release (all P<0.01). The expression of GRP78, CHOP, Bax, and caspase-12 were down-regulated (all P<0.01), and the expression of Bcl-2 and Bcl-2/Bax ratio was up-regulated (all P<0.01); IGRS increased the expression of SERCA2 mRNA in PC12 cells after OGD/R injury (P<0.01), decreased [Ca2+]i and down-regulated the expression of RyR2 mRNA and IP3R1 mRNA. CONCLUSIONS IGRS has neuroprotective effect, which may alleviate cerebral ischemia-reperfusion injury by regulating SERCA2, maintaining calcium balance, and inhibiting endoplasmic reticulum stress-mediated apoptosis.
Collapse
|