1
|
Wang B, Su A, Li M, Wang X, Gao Y, Su L, Li W, Ma Y. Construction of a prognostic model for radical esophagectomy based on immunohistochemical prognostic markers combined with clinicopathological factors. Medicine (Baltimore) 2023; 102:e32889. [PMID: 36862875 PMCID: PMC9981367 DOI: 10.1097/md.0000000000032889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and lacks effective biomarkers to evaluate prognosis and treatment. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a protein highly expressed in ESCC tissues screened by isobaric tags for relative and absolute quantitation proteomics, which has significant prognostic value in a variety of malignant tumors, but its relationship with ESCC remains unclear. By immunohistochemical staining of 266 ESCC samples, we analyzed the relationship between GPNMB and ESCC. To explore how to improve the ability of ESCC prognostic assessment, we established a prognostic model of GPNMB and clinicopathological features. The results suggest that GPNMB expression is generally positive in ESCC tissues and is significantly associated with poorer differentiation, more advanced American Joint Council on Cancer (AJCC) stage, and higher tumor aggressiveness (P < .05). Multivariate Cox analysis indicated that GPNMB expression was an independent risk factor for ESCC patients. A total of 188 (70%) patients were randomly selected from the training cohort and the four variables were automatically screened by stepwise regression based on the AIC principle: GPNMB expression, nation, AJCC stage and nerve invasion. Through the weighted term, we calculate the risk score of each patient, and by drawing the receiver operating characteristic curve, we show that the model has good prognostic evaluation performance. The stability of the model was verified by test cohort. Conclusion: GPNMB is a prognostic marker consistent with the characteristics of tumor therapeutic targets. For the first time, we constructed a prognostic model combining immunohistochemical prognostic markers and clinicopathological features in ESCC, which showed higher prognostic efficacy than AJCC staging system in predicting the prognosis of ESCC patients in this region.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
- Xinjiang Medical University, Urumqi, China
| | - Anna Su
- Internal Medicine, Urumqi First People’s Hospital, Urumqi, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Xuecheng Wang
- Thoracic Surgery, The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Yongmei Gao
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Liping Su
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Wan Li
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Palamaris K, Tzimou LM, Levidou G, Masaoutis C, Theochari I, Rontogianni D, Theocharis S. Histone Deacetylases (HDACs): Promising Biomarkers and Potential Therapeutic Targets in Thymic Epithelial Tumors. Int J Mol Sci 2023; 24:ijms24054263. [PMID: 36901692 PMCID: PMC10001744 DOI: 10.3390/ijms24054263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Histone deacetylases (HDACs) are core epigenetic factors, with pivotal roles in the regulation of various cellular procedures, and their deregulation is a major trait in the acquisition of malignancy properties. In this study we attempt the first comprehensive evaluation of six class I (HDAC1, HDAC2, HDAC3) and II HDACs (HDAC4, HDAC5, HDAC6) expression patterns in thymic epithelial tumors (TETs), with the aim of identifying their possible association with a number of clinicopathological parameters. Our study revealed higher positivity rates and expression levels of class I enzymes compared to class II. Sub-cellular localization and level of staining varied among the six isoforms. HDAC1 was almost exclusively restricted to the nucleus, while HDAC3 demonstrated both nuclear and cytoplasmic reactivity in the majority of examined specimens. HDAC2 expression was higher in more advanced Masaoka-Koga stages, and displayed a positive correlation with dismal prognoses. The three class II HDACs (HDAC4, HDAC5, HDAC6) exhibited similar expression patterns, with predominantly cytoplasmic staining, that was higher in epithelial rich TETs (B3, C) and more advanced tumor stages, while it was also associated with disease recurrence. Our findings could provide useful insights for the effective implementation of HDACs as biomarkers and therapeutic targets for TETs, in the setting of precision medicine.
Collapse
Affiliation(s)
- Kostas Palamaris
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Luisa-Maria Tzimou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Levidou
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Irene Theochari
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitra Rontogianni
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
3
|
Xu B, Zhang Q, Hu X, Li Q, Sun T, Li W, Ouyang Q, Wang J, Tong Z, Yan M, Li H, Zeng X, Shan C, Wang X, Yan X, Zhang J, Zhang Y, Wang J, Zhang L, Lin Y, Feng J, Chen Q, Huang J, Zhang L, Yang L, Tian Y, Shang H. Entinostat, a class I selective histone deacetylase inhibitor, plus exemestane for Chinese patients with hormone receptor-positive advanced breast cancer: A multicenter, randomized, double-blind, placebo-controlled, phase 3 trial. Acta Pharm Sin B 2023; 13:2250-2258. [DOI: 10.1016/j.apsb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
|
4
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Wang K, Wang K, Wang J, Yu F, Ye C. Protective Effect of Clostridium butyricum on Escherichia coli-Induced Endometritis in Mice via Ameliorating Endometrial Barrier and Inhibiting Inflammatory Response. Microbiol Spectr 2022; 10:e0328622. [PMID: 36321897 PMCID: PMC9769554 DOI: 10.1128/spectrum.03286-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Endometritis is a common reproductive disease occurs both in human and animals. Clostridium butyricum is a Gram-positive anaerobic bacterium that can ferment various carbohydrates into butyric acid. In this study, we investigated the effects of C. butyricum on Escherichia coli-induced endometritis and clarified the underlying mechanism. We first verified the protective effect of C. butyricum in vivo by establishing a mouse model of E. coli-induced endometritis. It was determined that C. butyricum pretreatment significantly reversed E. coli-induced uterine histopathological changes. Meanwhile, C. butyricum pretreatment significantly decreased the production of pro-inflammatory mediators and the levels of myeloperoxidase (MPO) and malondialdehyde (MDA). We found that C. butyricum could inhibit TLR4-mediated phosphorylation of NF-κB and the activity of histone deacetylase (HDAC). Furthermore, C. butyricum significantly increased the expression of the tight junction proteins (TJPs) ZO-1, claudin-3, and occludin. Additionally, treatment with C. butyricum culture supernatant dramatically suppressed the degree of inflammation in the uterus, and inactivated C. butyricum did not exert a protective effect. We subsequently investigated butyrate levels in both the uterus and blood and observed a marked augment in the C. butyricum treatment group. Collectively, our data suggest that C. butyricum maintains epithelial barrier function and suppresses inflammatory response during E. coli-induced endometritis and that the protective effect of C. butyricum may be related to the production of butyrate. IMPORTANCE Endometritis is a common reproductive disease both in human and animals. It impairs female fertility by disrupting endometrial function. Antibiotics are widely used to treat endometritis in clinical practice, but the misuse of antibiotics often leads to antibiotic resistance. Therefore, there is an urgent need for new therapeutic agents to treat bacterial endometritis and overcome bacterial resistance. In this study, we found that C. butyricum could protect from E. coli-induced endometritis.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Fan Yu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Ye
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci Rep 2022; 12:19977. [PMID: 36404352 PMCID: PMC9676188 DOI: 10.1038/s41598-022-24170-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolomic analysis of blood plasma samples from COVID-19 patients is a promising approach allowing for the evaluation of disease progression. We performed the metabolomic analysis of plasma samples of 30 COVID-19 patients and the 19 controls using the high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometric detection (LC-MS/MS). In our analysis, we identified 103 metabolites enriched in KEGG metabolic pathways such as amino acid metabolism and the biosynthesis of aminoacyl-tRNAs, which differed significantly between the COVID-19 patients and the controls. Using ANDSystem software, we performed the reconstruction of gene networks describing the potential genetic regulation of metabolic pathways perturbed in COVID-19 patients by SARS-CoV-2 proteins. The nonstructural proteins of SARS-CoV-2 (orf8 and nsp5) and structural protein E were involved in the greater number of regulatory pathways. The reconstructed gene networks suggest the hypotheses on the molecular mechanisms of virus-host interactions in COVID-19 pathology and provide a basis for the further experimental and computer studies of the regulation of metabolic pathways by SARS-CoV-2 proteins. Our metabolomic analysis suggests the need for nonstructural protein-based vaccines and the control strategy to reduce the disease progression of COVID-19.
Collapse
|
7
|
Xu QR, Du XH, Huang TT, Zheng YC, Li YL, Huang DY, Dai HQ, Li EM, Fang WK. Role of Cell-Cell Junctions in Oesophageal Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12101378. [PMID: 36291586 PMCID: PMC9599896 DOI: 10.3390/biom12101378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cell-cell junctions comprise various structures, including adherens junctions, tight junctions, desmosomes, and gap junctions. They link cells to each other in tissues and regulate tissue homeostasis in critical cellular processes. Recent advances in cell-cell junction research have led to critical discoveries. Cell-cell adhesion components are important for the invasion and metastasis of tumour cells, which are not only related to cell-cell adhesion changes, but they are also involved in critical molecular signal pathways. They are of great significance, especially given that relevant molecular mechanisms are being discovered, there are an increasing number of emerging biomarkers, targeted therapies are becoming a future therapeutic concern, and there is an increased number of therapeutic agents undergoing clinical trials. Oesophageal squamous cell carcinoma (ESCC), the most common histological subtype of oesophageal cancer, is one of the most common cancers to affect epithelial tissue. ESCC progression is accompanied by the abnormal expression or localisation of components at cell-cell junctions. This review will discuss the recent scientific developments related to the molecules at cell-cell junctions and their role in ESCC to offer valuable insights for readers, provide a global view of the relationships between position, construction, and function, and give a reference for future mechanistic studies, diagnoses, and therapeutic developments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - En-Min Li
- Correspondence: (E.-M.L.); (W.-K.F.)
| | | |
Collapse
|
8
|
TOPK Affects Autophagy of Skin Squamous Cell Carcinoma by Regulating NF-KB Pathway through HDAC1. DISEASE MARKERS 2022; 2022:3771711. [PMID: 35756488 PMCID: PMC9217538 DOI: 10.1155/2022/3771711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the effect and potential mechanism of T-LAK cell-originated protein kinase (TOPK) on autophagy in cutaneous squamous cell carcinoma (cSCC). Methods Human cSCC cancer tissue and paracancerous tissue samples were collected clinically; immunohistochemistry was used to detect the expression of TOPK, nuclear factor κB p65 (NF-κB p65), phosphorylated nuclear factor κB inhibitor α (p-IκBα), Beclin-1, and microtubule-associated protein 1 light chain 3 (LC3) in cSCC tissue; and immunofluorescence was adopted to detect the coexpression of NF-κB p65, p-IκBα, and TOPK in cSCC tissue. After TOPK silencing or overexpression, SCL-1 and A431 cells were treated with PDTC and 3-MA, respectively. RT-qPCR and Western Blot were used to detect the mRNA and protein expressions of histone deacetylase 1 (HDAC1) in TOPK-silenced/overexpressing cells. Western Blot was performed to detect the protein expressions of NF-κB p65, p-p65, IκBα, p-IκBα, Beclin-1, and LC3 in each group. Transwell and scratch healing experiments were used to detect the ability of cells to invade and migrate. The formation of autophagosomes in each group was observed by TEM. Results Compared with adjacent tissues, TOPK, NF-κB p65, p-IκBα, Beclin-1, and LC3 were highly expressed in cSCC cancer tissues; TOPK and NF-κB p65 were coexpressed; and TOPK and p-IκBα were expressed in cSCC cancer tissues both increased. The mRNA and protein levels of TOPK in human cSCC cells were significantly higher than those in human normal skin HaCaT cells. After TOPK knockout, the expression of HDAC1, p-IκBα/IκBα, NF-κB p65, p-p65, Beclin-1, LC3II/I proteins, cell invasion, and migration abilities were significantly reduced, and fewer autophagosomes were observed. Treatment with PDTC and 3-MA significantly downregulated NF-κB pathway protein activity and autophagy level and reduced cell migration and invasion ability. Conclusion TOPK promotes the malignant progression of cSCC by upregulating HDAC1 to activate the NF-κB pathway and promote autophagy.
Collapse
|
9
|
Rahbari R, Rasmi Y, Khadem-Ansari MH, Abdi M. The role of histone deacetylase 3 in breast cancer. Med Oncol 2022; 39:84. [PMID: 35578147 DOI: 10.1007/s12032-022-01681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/05/2022] [Indexed: 11/25/2022]
Abstract
It has been recently revealed that Histone Deacetylase (HDAC) 3, a unique member of the HDACs family, can trigger and progress cancers by alternation in genes expression and proteins activity. Epigenetic modifications by HDACs have been studied well in various cancer cells. Recent studies have focused on the HDAC enzymes as a possible target in cancer therapy. There are significant documents on upregulation of HDAC3 in breast cancer (BC) cells which suggest an oncogenic role for this enzyme. Interestingly, some studies showed that HDAC3 inhibition could be considered as a promising target in breast cancer therapy, and thus far, several inhibitors from different nature have been introduced. In this review, we discussed the function and highlight the existing inhibitors of HDAC3 in BC pathogenesis and therapy.
Collapse
Affiliation(s)
- Rezgar Rahbari
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
10
|
Lu Z, Yun Y, Zhang Y, Ou Y, Wang M. Promotion of microRNA-146a by histone deacetylase 4 silencing contributes to radiosensitization of esophageal carcinoma. J Transl Med 2022; 20:101. [PMID: 35193602 PMCID: PMC8862391 DOI: 10.1186/s12967-021-03171-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background Histone deacetylases (HDACs) have been identified to be implicated in the carcinogenesis and cancer progression. The present study was performed to probe into the effect of HDAC4 on radioresistance of esophageal carcinoma (EC). Methods The expression of HDAC4 in responders and non-responders to radiotherapy was characterized by RT-qPCR, immunohistochemistry, and Western blot analysis. EC cells were exposed to continuous fractionated X-ray irradiation, and their proliferation and apoptosis were evaluated by means of colony formation assay and flow cytometry based Annexin V-FITC/PI apoptosis assay in response to HDAC4 overexpression or silencing. Mechanistic investigation was conducted by means of in silico analysis and dual-luciferase reporter gene assay. Tumor xenografts derived from radioresistant EC cells were exposed to local X-ray irradiation in vivo for validation. Results High expression of HDAC4 was detected in either tumor tissues derived from radiotherapy responders or radioresistant EC cells. Loss of HDAC4 contributed to suppressed proliferation and enhanced apoptosis of radioresistant EC cells. Moreover, our findings revealed that HDAC4 conferred radioresistance of EC by downregulating microRNA-146a (miR-146a). Interleukin-1 receptor-associated kinase 1 (IRAK1) was a target of miR-146a, and its knockdown promoted radiosensitivity. Silencing of HDAC4 radiosensitized EC cells both in vitro and in vivo via the miR-146a/IRAK1 axis. Conclusion Hence, loss of HDAC4 upregulated miR-146a to limit radioresistance. This study aids in the better understanding about mechanism responsible for radioresistance of EC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03171-z.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yifei Yun
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yutong Zhang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Yao Ou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, 213000, China
| | - Meihua Wang
- Department of Pathology, Changzhou Tumor Hospital, Soochow University, No. 68, Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
11
|
Unraveling the Epigenetic Role and Clinical Impact of Histone Deacetylases in Neoplasia. Diagnostics (Basel) 2021; 11:diagnostics11081346. [PMID: 34441281 PMCID: PMC8394077 DOI: 10.3390/diagnostics11081346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) have long been implicated in tumorigenesis and tumor progression demonstrating their important participation in neoplasia. Therefore, numerous studies have been performed, highlighting the mechanism of HDACs action in tumor cells and demonstrating the potential role of HDAC inhibitors in the treatment of different cancer types. The outcome of these studies further delineated and strengthened the solid role that HDACs and epigenetic modifications exert in neoplasia. These results have spread promise regarding the potential use of HDACs as prospective therapeutic targets. Nevertheless, the clinical significance of HDAC expression and their use as biomarkers in cancer has not been extensively elucidated. The aim of our study is to emphasize the clinical significance of HDAC isoforms expression in different tumor types and the correlations noted between the clinicopathological parameters of tumors and patient outcomes. We further discuss the obstacles that the next generation HDAC inhibitors need to overcome, for them to become more potent.
Collapse
|