1
|
Xu G, Xu Y, Zhang Y, Kao G, Li J. miR-1268a Regulates Fatty Acid Metabolism by Targeting CD36 in Angiotensin II-induced Heart Failure. Cell Biochem Biophys 2024; 82:1193-1201. [PMID: 38619643 DOI: 10.1007/s12013-024-01268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Multiple RNAs have been involved in the progress of heart failure. However, the role of miR-1268a in heart failure is still unclear. The differentially expressed miRNAs in heart failure was analyzed based on GEO dataset GSE104150. AC16 cells were treated with Angiotensin II (Ang II) to explore the role of miR-1268a in heart failure. The web tool miRWalk was used to analyze the targets of miR-1268a. miR-1268a was up-regulated in Ang II-treated AC16 cells. Ang II treatment markedly inhibited cell proliferation, ATP production, fatty acid (FA) uptake and enhanced levels of HF markers BNP and ST2, and oxidative stress of AC16 cells. Notably, inhibition of miR-1268a eliminated the inhibiting effect of Ang II on cell proliferation, ATP production, FA uptake and decreased levels of BNP an ST2, and oxidative stress on AC16 cells. Furthermore, CD36 was a target of miR-1268a and the CD36 level was decreased by miR-1268a mimics but increased by miR-1268a inhibitor in AC16 cells. miR-1268a regulates FA metabolism and oxidative stress in myocardial cells by targeting CD36 in heart failure.
Collapse
Affiliation(s)
- Gang Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Yi Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Ying Zhang
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Guoying Kao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| | - Jun Li
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| |
Collapse
|
2
|
Shao X, Zhang M, Fang J, Ge R, Su Y, Liu H, Zhang D, Wang Q. Analysis of the lncRNA-miRNA-mRNA network to explore the regulation mechanism in human traumatic brain injury. Neuroreport 2024; 35:328-336. [PMID: 38407897 DOI: 10.1097/wnr.0000000000002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Traumatic brain injury (TBI) refers to brain dysfunction with or without traumatic structural injury induced by an external force. Nevertheless, the molecular mechanism of TBI remains undefined. Differentially expressed (DE) lncRNAs, DEmRNAs and DEmiRNAs were selected between human TBI tissues and the adjacent histologically normal tissue by high-throughput sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of overlapping DEmRNAs between predicted mRNAs of DEmiRNAs and DEmRNAs. The competitive endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was established in light of the ceRNA theory. In the ceRNA network, the key lncRNAs were screened out. Then key lncRNAs related ceRNA subnetwork was constructed. After that, qRT-PCR was applied to validate the expression levels of hub genes. 114 DElncRNAs, 1807 DEmRNAs and 6 DEmiRNAs were DE in TBI. The TBI-related ceRNA network was built with 73 lncRNA nodes, 81 mRNA nodes and 6 miRNAs. According to topological analysis, two hub lncRNAs (ENST00000562897 and ENST00000640877) were selected to construct the ceRNA subnetwork. Subsequently, key lncRNA-miRNA-mRNA regulatory axes constructed by two lncRNAs including ENST00000562897 and ENST00000640877, two miRNAs including miR-6721-5p and miR-129-1-3p, two mRNAs including ketohexokinase (KHK) and cyclic nucleotide-gated channel beta1 (CNGB1), were identified. Furthermore, qRT-PCR results displayed that the expression of ENST00000562897, KHK and CNGB1 were significantly decreased in TBI, while the miR-6721-5p expression levels were markedly increased in TBI. The results of our study reveal a new insight into understanding the ceRNA regulation mechanism in TBI and select key lncRNA-miRNA-mRNA axes for prevention and treatment of TBI.
Collapse
Affiliation(s)
- Xuefei Shao
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Maosong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Jincheng Fang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Ruixiang Ge
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Yue Su
- Graduate School of Wannan Medical College, Wuhu, China
| | - Hongbing Liu
- Graduate School of Wannan Medical College, Wuhu, China
| | - Daojin Zhang
- Graduate School of Wannan Medical College, Wuhu, China
| | - Qifu Wang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| |
Collapse
|
3
|
Zhang Y, Zhao J, Jin Q, Zhuang L. Transcriptomic Analyses and Experimental Validation Identified Immune-Related lncRNA-mRNA Pair MIR210HG- BPIFC Regulating the Progression of Hypertrophic Cardiomyopathy. Int J Mol Sci 2024; 25:2816. [PMID: 38474063 DOI: 10.3390/ijms25052816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease in which the myocardium of the heart becomes asymmetrically thickened, malformed, disordered, and loses its normal structure and function. Recent studies have demonstrated the significant involvement of inflammatory responses in HCM. However, the precise role of immune-related long non-coding RNAs (lncRNAs) in the pathogenesis of HCM remains unclear. In this study, we performed a comprehensive analysis of immune-related lncRNAs in HCM. First, transcriptomic RNA-Seq data from both HCM patients and healthy individuals (GSE180313) were reanalyzed thoroughly. Key HCM-related modules were identified using weighted gene co-expression network analysis (WGCNA). A screening for immune-related lncRNAs was conducted within the key modules using immune-related mRNA co-expression analysis. Based on lncRNA-mRNA pairs that exhibit shared regulatory microRNAs (miRNAs), we constructed a competing endogenous RNA (ceRNA) network, comprising 9 lncRNAs and 17 mRNAs that were significantly correlated. Among the 26 lncRNA-mRNA pairs, only the MIR210HG-BPIFC pair was verified by another HCM dataset (GSE130036) and the isoprenaline (ISO)-induced HCM cell model. Furthermore, knockdown of MIR210HG increased the regulatory miRNAs and decreased the mRNA expression of BPIFC correspondingly in AC16 cells. Additionally, the analysis of immune cell infiltration indicated that the MIR210HG-BPIFC pair was potentially involved in the infiltration of naïve CD4+ T cells and CD8+ T cells. Together, our findings indicate that the decreased expression of the lncRNA-mRNA pair MIR210HG-BPIFC was significantly correlated with the pathogenesis of the disease and may be involved in the immune cell infiltration in the mechanism of HCM.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jiuxiao Zhao
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao Jin
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
4
|
Rakicevic L. DNA and RNA Molecules as a Foundation of Therapy Strategies for Treatment of Cardiovascular Diseases. Pharmaceutics 2023; 15:2141. [PMID: 37631355 PMCID: PMC10459020 DOI: 10.3390/pharmaceutics15082141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
There has always been a tendency of medicine to take an individualised approach to treating patients, but the most significant advances were achieved through the methods of molecular biology, where the nucleic acids are in the limelight. Decades of research of molecular biology resulted in setting medicine on a completely new platform. The most significant current research is related to the possibilities that DNA and RNA analyses can offer in terms of more precise diagnostics and more subtle stratification of patients in order to identify patients for specific therapy treatments. Additionally, principles of structure and functioning of nucleic acids have become a motive for creating entirely new therapy strategies and an innovative generation of drugs. All this also applies to cardiovascular diseases (CVDs) which are the leading cause of mortality in developed countries. This review considers the most up-to-date achievements related to the use of translatory potential of DNA and RNA in treatment of cardiovascular diseases, and considers the challenges and prospects in this field. The foundations which allow the use of translatory potential are also presented. The first part of this review focuses on the potential of the DNA variants which impact conventional therapies and on the DNA variants which are starting points for designing new pharmacotherapeutics. The second part of this review considers the translatory potential of non-coding RNA molecules which can be used to formulate new generations of therapeutics for CVDs.
Collapse
Affiliation(s)
- Ljiljana Rakicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
5
|
Chen JY, Xie ZX, Dai JZ, Han JY, Wang K, Lu LH, Jin JJ, Xue SJ. Reconstruction and analysis of potential biomarkers for hypertrophic cardiomyopathy based on a competing endogenous RNA network. BMC Cardiovasc Disord 2022; 22:422. [PMID: 36138345 PMCID: PMC9503253 DOI: 10.1186/s12872-022-02862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heritable cardiomyopath. Although considerable effort has been made to understand the pathogenesis of HCM, the mechanism of how long noncoding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network result in HCM remains unknown. In this study, we acquired a total of 520 different expression profiles of lncRNAs (DElncRNAs) and 371 messenger RNAs (mRNA, DEGs) by microarray and 33 microRNAs (DEmiRNAs) by sequencing in plasma of patients with HCM and healthy controls. Then lncRNA–miRNA pairs were predicted using miRcode and starBase and crossed with DEmiRNAs. MiRNA–mRNA pairs were retrieved from miRanda and TargetScan and crossed with DEGs. Combined with these pairs, the ceRNA network with eight lncRNAs, three miRNAs, and 22 mRNAs was constructed. lncRNA RP11-66N24.4 and LINC00310 were among the top 10% nodes. The hub nodes were analyzed to reconstruct a subnetwork. Furthermore, quantitative real-time polymerase chain reaction results showed that LINC00310 was significantly decreased in patients with HCM. For LINC00310, GO analysis revealed that biological processes were enriched in cardiovascular system development, sprouting angiogenesis, circulatory system development, and pathway analysis in the cGMP-PKG signaling pathway. These results indicate that the novel lncRNA-related ceRNA network in HCM and LINC00310 may play a role in the mechanism of HCM pathogenesis, which could provide insight into the pathogenesis of HCM.
Collapse
Affiliation(s)
- Jin-Yan Chen
- Institute for Immunology, Fujian Academy of Medical Sciences, No. 7 Wusi Road, Fuzhou, 350001, China. .,Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, 350001, China.
| | - Zhang-Xin Xie
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jia-Zhen Dai
- Department of Cardiology, Zhangzhou Affilated Hospital, Zhangzhou, China
| | - Jun-Yong Han
- Institute for Immunology, Fujian Academy of Medical Sciences, No. 7 Wusi Road, Fuzhou, 350001, China.,Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, 350001, China
| | - Kun Wang
- Institute for Immunology, Fujian Academy of Medical Sciences, No. 7 Wusi Road, Fuzhou, 350001, China.,Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, 350001, China
| | - Li-Hong Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
| | - Jing-Jun Jin
- Institute for Immunology, Fujian Academy of Medical Sciences, No. 7 Wusi Road, Fuzhou, 350001, China.,Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, 350001, China
| | - Shi-Jie Xue
- Institute for Immunology, Fujian Academy of Medical Sciences, No. 7 Wusi Road, Fuzhou, 350001, China.,Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, 350001, China
| |
Collapse
|
6
|
lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1450610. [PMID: 35401927 PMCID: PMC8989615 DOI: 10.1155/2022/1450610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease and can result in substantial disability. The current study explored the potentials of long noncoding RNA- (lncRNA-) circular RNA- (circRNA-) microRNA- (miRNA-) messenger RNA (mRNA) networks in HCM. Firstly, HCM-related microarray data were procured from the GEO database, with differentially expressed genes (DEGs) obtained. HCM-related target genes were retrieved in combination with GeneCards and CTD databases, and candidate target genes were subsequently obtained by intersection screening. Further, an interaction network diagram of candidate target genes was constructed using the STRING database, and the hub genes in the network were determined according to the core degree. The “ClusterProfiler” package of the R software was adopted for GO and KEGG analyses of candidate target genes, to analyze the potential molecular pathways in HCM. Next, upstream miRNA, lncRNA, and circRNA of ACTB were predicted with RNAInter, mirDIP, TargetScan, DIANA-LncBase, and StarBase databases, followed by construction of lncRNA/circRNA-miRNA-mRNA coexpression networks. ACTB, miR-206, circFN1, and ADAMTS9-AS1 expression in peripheral blood samples from HCM patients and normal healthy controls were detected using RT-qPCR. Moreover, rat cardiomyocyte cell lines H9c2 and HEK293 cells were selected for in vitro verification of competitive endogenous RNA (ceRNA) regulation mechanism. A total of 15 candidate target genes related to HCM were screened using the online databases. Further protein-protein interaction analysis identified ACTB as the hub gene for HCM. The targeted binding relationship between miR-206, miR-145-5p, miR-1-3p, and ACTB was found. Furthermore, ADAMTS9-AS1 and circFN1 were discovered as the upstream genes of miR-206. Moreover, ADAMTS9-AS1, circFN1, and ACTB were found to be poorly expressed, and miR-206 was highly expressed in HCM. In vitro experimentation further confirmed that ADAMTS9-AS1 and circFN1 could competitively bind to miR-206, thereby augmenting ACTB expression. Taken all, ADAMTS9-AS1/circFN1-miR-206-ACTB regulatory network may involve in HCM occurrence, providing a novel theoretical basis for in-depth understanding of mechanism of HCM.
Collapse
|
7
|
Zhou Z, Yang P, Zhang B, Yao M, Jia Y, Li N, Liu H, Bai H, Gong X. Long Noncoding RNA TTC39A-AS1 Promotes Breast Cancer Tumorigenicity by Sponging MicroRNA-483-3p and Thereby Upregulating MTA2. Pharmacology 2021; 106:573-587. [PMID: 34488224 DOI: 10.1159/000515909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/16/2021] [Indexed: 12/09/2022]
Abstract
INTRODUCTION In recent years, the regulatory activities of long noncoding RNAs have received increasing attention as an important research focus. This study aimed to characterize the expression and detailed roles of TTC39A antisense RNA 1 (TTC39A-AS1) in breast cancer (BC), in addition to concentrating on its downstream mechanisms. METHODS Quantitative RT-PCR was performed to determine the expression levels of TTC39A-AS1, microRNA-483-3p (miR-483-3p), and metastasis-associated gene 2 (MTA2). Further, the detailed functions of TTC39A-AS1 in BC cells were confirmed using the Cell Counting Kit 8 assay, flow cytometric analysis, and Transwell cell migration and invasion assays. The targeting relationship between TTC39A-AS1, miR-483-3p, and MTA2 in BC was predicted via bioinformatics analysis and further confirmed by performing the luciferase reporter assay and RNA immunoprecipitation. RESULTS TTC39A-AS1 was present in high levels in BC; this result was confirmed in our sample cohort and The Cancer Genome Atlas database. Patients with BC with a high level of TTC39A-AS1 had a shorter overall survival than those with a low level of TTC39A-AS1. Functionally, the absence of TTC39A-AS1 accelerated cell apo-ptosis but retained cell proliferation, migration, and invasion. Mechanistically, TTC39A-AS1 functioned as a competing endogenous RNA in BC by sponging miR-483-3p and thereby indirectly increasing MTA2 expression. Finally, rescue experiments revealed that the tumor-inhibiting actions of TTC39A-AS1 knockdown on the malignant characteristics of BC cells could be reversed by inhibiting miR-483-3p or upregulating MTA2. CONCLUSION The newly identified TTC39A-AS1/miR-483-3p/MTA2 pathway was revealed to be a critical regulator in the tumorigenicity of BC, possibly offering a novel therapeutic direction for the anticancer treatment of BC.
Collapse
Affiliation(s)
- Zhaohui Zhou
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Ping Yang
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Binming Zhang
- Department of Breast, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Maohui Yao
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Yali Jia
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Na Li
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Huimin Liu
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Haiya Bai
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaojun Gong
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| |
Collapse
|
8
|
Shahzadi SK, Naidoo N, Alsheikh-Ali A, Rizzo M, Rizvi AA, Santos RD, Banerjee Y. Reconnoitering the Role of Long-Noncoding RNAs in Hypertrophic Cardiomyopathy: A Descriptive Review. Int J Mol Sci 2021; 22:ijms22179378. [PMID: 34502285 PMCID: PMC8430576 DOI: 10.3390/ijms22179378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy. It is characterized by an unexplained non-dilated hypertrophy of the left ventricle with a conserved or elevated ejection fraction. It is a genetically heterogeneous disease largely caused by variants of genes encoding for cardiac sarcomere proteins, including MYH7, MYBPC3, ACTC1, TPM1, MYL2, MYL3, TNNI3, and TNNT23. Preclinical evidence indicates that the enhanced calcium sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric variations but may also result from secondary mutation-driven alterations. Long non-coding RNAs (lncRNAs) are a large class of transcripts ≥200 nucleotides in length that do not encode proteins. Compared to coding mRNAs, most lncRNAs are not as well-annotated and their functions are greatly unexplored. Nevertheless, increasing evidence shows that lncRNAs are involved in a variety of biological processes and diseases including HCM. Accumulating evidence has indicated that lncRNAs are dysregulated in HCM, and closely related to sarcomere construction, calcium channeling and homeostasis of mitochondria. In this review, we have summarized the known regulatory and functional roles of lncRNAs in HCM.
Collapse
Affiliation(s)
- Syeda K. Shahzadi
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
| | - Nerissa Naidoo
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Correspondence: (N.N.); (Y.B.); Tel.: +971-4383-8728 (N.N.); +971-4383-8710 (Y.B.)
| | - Alawi Alsheikh-Ali
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Dubai Health Authority, Dubai 66566, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Raul D. Santos
- The Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo 01000, Brazil;
| | - Yajnavalka Banerjee
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Centre of Medical Education, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: (N.N.); (Y.B.); Tel.: +971-4383-8728 (N.N.); +971-4383-8710 (Y.B.)
| |
Collapse
|
9
|
Wang D, Wang L, Han J, Zhang Z, Fang B, Chen F. Bioinformatics-Based Analysis of the lncRNA-miRNA-mRNA Network and TF Regulatory Network to Explore the Regulation Mechanism in Spinal Cord Ischemia/Reperfusion Injury. Front Genet 2021; 12:650180. [PMID: 33986769 PMCID: PMC8110913 DOI: 10.3389/fgene.2021.650180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Spinal cord ischemia/reperfusion injury (SCII) is a catastrophic complication involved with cardiovascular, spine, and thoracic surgeries and can lead to paraplegia. Nevertheless, the molecular mechanism of SCII remain ill-defined. Methods Expression profiling (GSE138966) data were obtained from GEO database. Then, differentially expressed (DE) lncRNAs and DEmRNAs were screened out with p < 0.05, and | fold change| > 1.5. Aberrant miRNAs expression in SCII was obtained from PubMed. Functional enrichment analysis of overlapping DEmRNAs between predicted mRNAs in miRDB database and DEmRNAs obtained from GSE138966 was performed using cluster Profiler R package. The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was established in light of ceRNA theory. The key lncRNAs in the ceRNA network were identified by topological analysis. Subsequently, key lncRNAs related ceRNA-pathway network and transcription factors (TFs)-mRNAs network were constructed. Simultaneously, the expression levels of hub genes were measured via qRT-PCR. Results The results in this study indicated that 76 miRNAs, 1373 lncRNAs, and 4813 mRNAs were differentially expressed in SCII. A SCII-related ceRNA network was constructed with 154 ncRNAs, 139 mRNAs, and 51 miRNAs. According topological analysis, six lncRNAs (NONRATT019236.2, NONRATT009530.2, NONRATT026999.2, TCONS_00032391, NONRATT023112.2, and NONRATT021956.2) were selected to establish the ceRNA-pathway network, and then two candidate hub lncRNAs (NONRATT009530.2 and NONRATT026999.2) were identified. Subsequently, two lncRNA-miRNA-mRNA regulatory axes were identified. NONRATT026999.2 and NONRATT009530.2 might involve SCII via miR-20b-5p/Map3k8 axis based on the complex ceRNA network. SP1 and Hnf4a acting as important TFs might regulate Map3k8. Furthermore, qRT-PCR results showed that the NONRATT009530.2, NONRATT026999.2, Map3k8, Hfn4a, and SP1 were significantly upregulated in SCII of rats, while the miR-20b-5p was downregulated. Conclusion Our results offer a new insight to understand the ceRNA regulation mechanism in SCII and identify highlighted lncRNA-miRNA-mRNA axes and two key TFs as potential targets for prevention and treatment of SCII.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Limei Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Han
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Zaili Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|