Zhao Y, Zhao N, Kollie L, Yang D, Zhang X, Zhang H, Liang Z. Sasanquasaponin from
Camellia oleifera Abel Exerts an Anti-Inflammatory Effect in RAW 264.7 Cells via Inhibition of the NF-κB/MAPK Signaling Pathways.
Int J Mol Sci 2024;
25:2149. [PMID:
38396824 PMCID:
PMC10889153 DOI:
10.3390/ijms25042149]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Sasanquasaponin (SQS), a secondary metabolite that is derived from Camellia seeds, reportedly possesses notable biological properties. However, the anti-inflammatory effects of SQS and its underlying mechanisms remain poorly explored. Herein, we aimed to investigate the anti-inflammatory properties of SQS against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells, focusing on the nuclear factor-κB (NF-κB) and MAPK signaling pathways. SQS was isolated using a deep eutectic solvent and D101 macroporous adsorption resin and analyzed using high-performance liquid chromatography. The viability of LPS-stimulated RAW264.7 was assessed using the CCK-8 assay. The presence of reactive oxygen species (ROS) was evaluated using 2',7'-dichlorofluorescein-diacetate. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were detected using reverse transcription-quantitative PCR and ELISA. Western blot was performed to analyze the protein expression of LPS-induced RAW264.7 cells. Herein, SQS exhibited anti-inflammatory activity: 30 μg/mL of SQS significantly reduced ROS generation, inhibited the LPS-induced expression of iNOS and COX-2, and attenuated the production of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. The anti-inflammatory activity was potentially mediated by inhibiting the phosphorylation of IκBα and p65 in the NF-κB signaling pathway and the phosphorylation of ERK and JNK in the MAPK signaling pathway. Accordingly, SQS could inhibit inflammation in LPS-induced RAW264.7 cells by suppressing the NF-κB and MAPK signaling pathways. This study demonstrated the potential application of SQS as an anti-inflammatory agent.
Collapse