1
|
Ding Y, Lu Y, Guo J, Chen S, Han X, Wang S, Zhang M, Wang R, Song J, Wang K, Qiu W, Qi W. An investigation of the molecular characterization of the tripartite motif (TRIM) family and primary validation of TRIM31 in gastric cancer. Hum Genomics 2024; 18:77. [PMID: 38978046 PMCID: PMC11232234 DOI: 10.1186/s40246-024-00631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Most TRIM family members characterized by the E3-ubiquitin ligases, participate in ubiquitination and tumorigenesis. While there is a dearth of a comprehensive investigation for the entire family in gastric cancer (GC). By combining the TCGA and GEO databases, common TRIM family members (TRIMs) were obtained to investigate gene expression, gene mutations, and clinical prognosis. On the basis of TRIMs, a consensus clustering analysis was conducted, and a risk assessment system and prognostic model were developed. Particularly, TRIM31 with clinical prognostic and diagnostic value was chosen for single-gene bioinformatics analysis, in vitro experimental validation, and immunohistochemical analysis of clinical tissue microarrays. The combined dataset consisted of 66 TRIMs, of which 52 were differentially expressed and 43 were differentially prognostic. Significant survival differences existed between the gene clusters obtained by consensus clustering analysis. Using 4 differentially expressed genes identified by multivariate Cox regression and LASSO regression, a risk scoring system was developed. Higher risk scores were associated with a poorer prognosis, suppressive immune cell infiltration, and drug resistance. Transcriptomic data and clinical sample tissue microarrays confirmed that TRIM31 was highly expressed in GC and associated with a poor prognosis. Pathway enrichment analysis, cell migration and colony formation assay, EdU assay, reactive oxygen species (ROS) assay, and mitochondrial membrane potential assay revealed that TRIM31 may be implicated in cell cycle regulation and oxidative stress-related pathways, contribute to gastric carcinogenesis. This study investigated the whole functional and expression profile and a risk score system based on the TRIM family in GC. Further investigation centered around TRIM31 offers insight into the underlying mechanisms of action exhibited by other members of its family in the context of GC.
Collapse
Affiliation(s)
- Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Medical Oncology, Department of Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuming Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxi Han
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shibo Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengqi Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rui Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kongjia Wang
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Feng Q, Nie F, Gan L, Wei X, Liu P, Liu H, Zhang K, Fang Z, Wang H, Fang N. Tripartite motif 31 drives gastric cancer cell proliferation and invasion through activating the Wnt/β-catenin pathway by regulating Axin1 protein stability. Sci Rep 2023; 13:20099. [PMID: 37973999 PMCID: PMC10654727 DOI: 10.1038/s41598-023-47139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Mounting evidence has proposed the importance of the Wnt/β-catenin pathway and tripartite motif 31 (TRIM31) in certain malignancies. Our research aimed to clarify the correlation between aberrant TRIM31 expression and the Wnt/β-catenin pathway during gastric cancer (GC) oncogenesis and development. TRIM31 was drastically elevated in GC tissues and was closely associated with aggressive clinical outcomes and poor prognosis. Moreover, TRIM31 downregulation attenuated GC cell proliferation and invasion in vitro. Mechanistically, TRIM31 could bind and ubiquitinate Axin1 protein, thereby facilitating the activation of the Wnt/β-catenin pathway. Additionally, Axin1 knockdown partially abrogated the inhibitory effects on the proliferative, invasive and migratory abilities of GC cells induced by TRIM31 silencing. Furthermore, TRIM31 was negatively correlated with Axin1 protein expression in GC tissues. In summary, we revealed a new TRIM31-Axin1-Wnt/β-catenin axis that contributed greatly to the progression of GC, and targeting this regulatory axis may represent an effective treatment for GC patients.
Collapse
Affiliation(s)
- Qi Feng
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Fengting Nie
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lihong Gan
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Xianpin Wei
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Peng Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Hui Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Kaige Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Nian Fang
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
4
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
5
|
Guo Y, Lin P, Hua Y, Wang C. TRIM31: A molecule with a dual role in cancer. Front Oncol 2022; 12:1047177. [PMID: 36620540 PMCID: PMC9815508 DOI: 10.3389/fonc.2022.1047177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Tripartite motif (TRIM) 31 is a new member of the TRIM family and functions as an E3 ubiquitin ligase. Abnormal TRIM31 expression leads to a variety of pathological conditions, such as cancer, innate immunity diseases, sepsis-induced myocardial dysfunction, cerebral ischemic injury, nonalcoholic fatty liver disease and hypertensive nephropathy. In this review, we comprehensively overview the structure, expression and regulation of TRIM31 in cancer. Moreover, we discuss the dual role of TRIM31 in human cancer, and this dual role may be linked to its involvement in the selective regulation of several pivotal cellular signaling pathways: the p53 tumor suppressor, mTORC1, PI3K-AKT, NF-κB and Wnt/β-catenin pathways. In addition, we also discuss the emerging role of TRIM31 in innate immunity, autophagy and its growing sphere of influence across multiple human pathologies. Finally, a better understanding of the dual role of TRIM31 in cancer may provide new therapeutic strategies aimed at inhibiting the cancer-promoting effects of TRIM31 without affecting its tumor suppressor effects.
Collapse
Affiliation(s)
- Yafei Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Ping Lin, ; Yimin Hua, ; Chuan Wang,
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Ping Lin, ; Yimin Hua, ; Chuan Wang,
| | - Chuan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China,The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Ping Lin, ; Yimin Hua, ; Chuan Wang,
| |
Collapse
|
6
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
7
|
Emerging Roles of TRIM Family Proteins in Gliomas Pathogenesis. Cancers (Basel) 2022; 14:cancers14184536. [PMID: 36139694 PMCID: PMC9496762 DOI: 10.3390/cancers14184536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Gliomas remain challenging tumors due to their increased heterogeneity, complex molecular profile, and infiltrative phenotype that are often associated with a dismal prognosis. In a constant search for molecular changes and associated mechanisms, the TRIM protein family has emerged as an important area of investigation because of the regulation of vital cellular processes involved in brain pathophysiology that may possibly lead to brain tumor development. Herein, we discuss the diverse role of TRIM proteins in glioma progression, aiming to detect potential targets for future intervention. Abstract Gliomas encompass a vast category of CNS tumors affecting both adults and children. Treatment and diagnosis are often impeded due to intratumor heterogeneity and the aggressive nature of the more malignant forms. It is therefore essential to elucidate the molecular mechanisms and explore the intracellular signaling pathways underlying tumor pathology to provide more promising diagnostic, prognostic, and therapeutic tools for gliomas. The tripartite motif-containing (TRIM) superfamily of proteins plays a key role in many physiological cellular processes, including brain development and function. Emerging evidence supports the association of TRIMs with a wide variety of cancers, exhibiting both an oncogenic as well as a tumor suppressive role depending on cancer type. In this review, we provide evidence of the pivotal role of TRIM proteins in gliomagenesis and exploit their potential as prognostic biomarkers and therapeutic targets.
Collapse
|
8
|
Wu Z, Yu X, Zhang S, He Y, Guo W. The role of PI3K/AKT signaling pathway in gallbladder carcinoma. Am J Transl Res 2022; 14:4426-4442. [PMID: 35958463 PMCID: PMC9360899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The prognosis of gallbladder carcinoma (GBC) is poor, with a less than 5% five-year survival rate. Identifying the mechanisms underlying GBC occurrence and advancement is necessary to improve GBC patient prognosis and survival rates. The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (AKT) pathway is involved in cancer deterioration, tumor growth, cell proliferation, and distant metastasis. Studying the impacts of the PI3K/AKT pathway has resulted in the identification of key factors involved in GBC progression that might serve as therapeutic targets, promoting the development of new treatments. METHODS We reviewed recent literature exploring abnormal regulation of the PI3K/AKT pathway in gallbladder cancer, with a focus on abnormal RNA levels, protein level regulation, and drug treatment advances. RESULTS Further investigation of the regulation of small molecules and proteins by the PI3K/AKT pathway might ultimately provide new diagnostic or prognostic markers or cancer treatment targets. Recent studies have focused on RNA and proteins involved in the regulation of the cell cycle or cell movement in cancer progression via PI3K/AKT pathway, the use of anticancer drug combinations, or the anticancer effects of drugs not currently utilized for cancer treatment. CONCLUSIONS We herein review the known available molecules that affect the PI3K/AKT pathway in patients with GBC and the mechanisms of drug action associated with this pathway.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| |
Collapse
|
9
|
Ye T, Chen R, Zhou Y, Zhang J, Zhang Z, Wei H, Xu Y, Wang Y, Zhang Y. Salvianolic acid A (Sal A) suppresses malignant progression of glioma and enhances temozolomide (TMZ) sensitivity via repressing transgelin-2 (TAGLN2) mediated phosphatidylinositol-3-kinase (PI3K) / protein kinase B (Akt) pathway. Bioengineered 2022; 13:11646-11655. [PMID: 35505656 PMCID: PMC9276020 DOI: 10.1080/21655979.2022.2070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioma originated from excessively proliferative and highly invaded glial cells is a common intracranial malignant tumor with poor prognosis. Resistance to temozolomide (TMZ) is a clinical challenge in glioma treatment due to the fact that chemoresistance remains a main obstacle in the improvement of drug efficacy. Salvianolic acid A (Sal A), originated from traditional Chinese herbal medicine Salvia miltiorrhiza, possesses anti-tumor effects and could facilitate the delivery of drugs to brain tumor tissues. In the present work, effects of Sal A on the viability, proliferation, migration, invasion and apoptosis of human glioma cell line U87 cells as well as influence of Sal A on TMZ resistance were measured, so as to identify the biological function of Sal A in the malignant behaviors and chemoresistance of glioma cells. Additionally, activation of TAGLN2/PI3K/Akt pathway in glioma cells was also detected to investigate whether Sal A could regulate TAGLN2/PI3K/Akt to manipulate the progression of glioma and TMZ resistance. Results discovered that Sal A treatment reduced the viability, repressed the proliferation, migration and invasion of glioma cells as well as promoted the apoptosis of glioma cells. Besides, Sal A treatment suppressed TAGLN2/PI3K/Akt pathway in glioma cells. Sal A treatment strengthened the suppressing effect of TMZ on glioma cell proliferation and reinforced the promoting effect of TMZ on glioma cell apoptosis, which were abolished by upregulation of TAGLN2. To conclude, Sal A treatment could suppress the malignant behaviors of glioma cells and improve TMZ sensitivity through inactivating TAGLN2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Rongrong Chen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Juan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Zhongqin Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Hui Wei
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yan Xu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yulan Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yinlan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| |
Collapse
|
10
|
Alanazi R, Nakatogawa H, Wang H, Ji D, Luo Z, Golbourn B, Feng Z, Rutka JT, Sun H. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions
in vivo. Eur J Neurosci 2022; 55:1483-1491. [DOI: 10.1111/ejn.15647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Haitao Wang
- Departments of Surgery
- Departments of Surgery Physiology
| | | | - Zhengwei Luo
- Departments of Surgery
- Departments of Surgery Physiology
| | - Brian Golbourn
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children Toronto Canada
| | | | | | - Hong‐Shuo Sun
- Departments of Surgery
- Departments of Surgery Physiology
- Pharmacology, Temerty Faculty of Medicine
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
| |
Collapse
|
11
|
Xu F, Song H, Xiao Q, Wei Q, Pang X, Gao Y, Tan G. Type-III interferon stimulated gene TRIM31 mutation in an HBV patient blocks its ability in promoting HBx degradation. Virus Res 2022; 308:198650. [PMID: 34863820 DOI: 10.1016/j.virusres.2021.198650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
TRIM5γ, together with TRIM31, has been shown to promote HBx ubiquitination and degradation. This study aimed to explore whether a patient with HCC (hepatic cell carcinoma) having a small nucleotide inserted into the TRIM31 gene, which made a shorter transcript stop at 768 bp, would result in blocking the activity of TRIM31 in promoting HBx degradation. Besides, this study aimed to determine the binding region of the TRIM31-TRIM5γ-HBx complex. HBV (Hepatitis B virus) infection was reported to induce type-III IFN but not type-I or type-II IFNs, here TRIM31 was found to be a type III rather than a type I stimulated gene, which was indispensable in inhibiting the hepatitis B virus replication by the interferon families. Thus, this study further identified the critical role of TRIM31 in the host-hepatitis B virus interaction.
Collapse
Affiliation(s)
- Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Qingfei Xiao
- Department of Nephrology, the First Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Qi Wei
- Department of Anesthesia, the First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Xiaoli Pang
- Department of Pediatric Gastroenterology, the First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Yanli Gao
- Department of Pediatrics, the First Hospital, Jilin University, Changchun 130021, Jilin, China.
| | - Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
12
|
Zou Y, Huang L, Sun S, Yue F, Li Z, Ma Y, Ma H. Choline Kinase Alpha Promoted Glioma Development by Activating PI3K/AKT Signaling Pathway. Cancer Biother Radiopharm 2021. [PMID: 34788108 DOI: 10.1089/cbr.2021.0294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: The most commonly reported primary brain tumor in adults is glioma. Choline kinase alpha (CHKA) has been proved to play important roles in glioma. However, the mechanism of CHKA involved remains unclear. Therefore, this study aims to explore the mechanism of CHKA in glioma development. Methods: Immunohistochemistry, qRT-PCR, and Western blot were used to detect the expression of CHKA. Flow cytometry, Cell Counting Kit-8 (CCK-8), transwell, and wound healing assays were performed to evaluate cell apoptosis, proliferation, invasion, and migration, respectively. RNA sequencing was used to explore the differentially expressed genes affected by CHKA. The enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) helped to detect the signaling pathways CHKA affected. Tumor-bearing mice were established and evaluated by TUNEL assay, Ki-67 immunohistochemistry. and hematoxylin and eosin staining. Results: CHKA increased in glioma tissues and promoted cell proliferation, invasion, and migration, while inhibiting the glioma cell apoptosis. It was also showed that CHKA promoted glioma development in vivo. GO and KEGG analysis indicated that PI3K/AKT was significantly enriched in CHKA knockdown U251 cells. And CHKA promoted glioma development by activating PI3K/AKT signaling pathway. Conclusions: The authors demonstrated that CHKA was significantly elevated in glioma tissues. Mechanism analysis indicated that CHKA could promote glioma development by activating PI3K/AKT signaling pathway, suggesting that CHKA is promising to be a biomarker and therapeutic strategy for prognostic prediction of patients with glioma.
Collapse
Affiliation(s)
- Yourui Zou
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ling Huang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shengyu Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fangqian Yue
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Zhuoqi Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yue Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hui Ma
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Binder S, Zipfel I, Müller C, Wiedemann K, Schimmelpfennig C, Pfeifer G, Reiche K, Hauschildt S, Lehmann J, Köhl U, Horn F, Friedrich M. The noncoding RNA LINC00152 conveys contradicting effects in different glioblastoma cells. Sci Rep 2021; 11:18499. [PMID: 34531451 PMCID: PMC8446032 DOI: 10.1038/s41598-021-97533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by its high genetic heterogeneity. In search of novel putative therapeutic RNA targets we investigated the role of the oncogenic long noncoding RNA LINC00152 (CYTOR, and STAiR18) in A172 glioblastoma cells. Here, we are the first to describe, that LINC00152 unexpectedly acts in a tumor suppressive manner in this cell line. SiRNA-based knockdown of LINC00152 enhanced malignant tumor behaviors including proliferation, cell cycle entry, migration, and invasion, contradicting previous studies using U87-MG and LN229 glioblastoma cells. Furthermore, LINC00152 knockdown had no influence on survival of A172 glioblastoma cells. In a genome wide transcription analysis of A172 and U87-MG glioblastoma cells, we identified 70 LINC00152 target genes involved in locomotion, cell migration, and motility in A172 cells, whereas in U87-MG cells only 40 target genes were detected. The LINC00152-regulated genes found in A172 differed from those identified in U87-MG glioblastoma cells, none of them being regulated in both cell lines. These findings underline the strong genetic heterogeneity of glioblastoma and point to a potential, yet unknown risk addressing LINC00152 lncRNA as a prospective therapeutic target in GBM.
Collapse
Affiliation(s)
- Stefanie Binder
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | - Ivonne Zipfel
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Claudia Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Karolin Wiedemann
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Gabriele Pfeifer
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sunna Hauschildt
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Friedemann Horn
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Maik Friedrich
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|