1
|
Li C, Dong K, Zhuang Y, Luo Z, Qiu D, Luo Y, Li J, Xing D, Ma M, Wu W, Sun S. ACOT7 promotes retinoblastoma resistance to vincristine by regulating fatty acid metabolism reprogramming. Heliyon 2024; 10:e27156. [PMID: 38463820 PMCID: PMC10920713 DOI: 10.1016/j.heliyon.2024.e27156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
The rate of vincristine (VCR) resistance in the treatment of retinoblastoma (RB) is relatively high, and the exact role and mechanism of autophagy and fatty acid (FA) metabolism in RB are still unknown. The aim of this study was to elucidate the molecular mechanism by which acyl-CoA thioesterase 7 (ACOT7) regulates FA metabolism and autophagy, which may lead to potential therapeutic strategies for RB. In the present study, the relationship between FA metabolism and cellular drug sensitivity was evaluated through ACOT7 overexpression or inhibition tests in RB-resistant cells. The lipase inhibitor orlistat and the autophagy inhibitor CQ were used to determine the effects of ACOT7 on FA metabolism, autophagy, and cellular drug sensitivity, as well as the therapeutic value of ACOT7 targeting. The results showed that ACOT7 was upregulated in VCR-resistant RB cells, significantly enhancing cell resistance and indicating that ACOT7 may serve as a biomarker for VCR resistance in RB cells. Knockdown of ACOT7 inhibited FA metabolism and reduced cell viability in VCR-resistant RB cells. The effect of ACOT7 overexpression was opposite to that of ACOT7 knockdown, and ACOT7 overexpression promoted autophagy in VCR-resistant RB cells. After treatment with orlistat or CQ, FA metabolism in VCR-resistant RB cells decreased, cell viability and autophagy were inhibited, EMT was inhibited, and the sensitivity of RB cells to VCR was increased. In conclusion, ACOT7 knockdown can mediate FA metabolism to inhibit autophagy and the migration of RB cells, thereby improving the sensitivity of RB cells to VCR.
Collapse
Affiliation(s)
- Cairui Li
- Department of Ophthalmology, Dali Prefecture People's Hospital (The Third Affiliated Hospital of Dali University), Dali, Yunnan province, 671003, China
| | - Kaiye Dong
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Yanmei Zhuang
- Department of Ophthalmology, Weishan County People's Hospital, Dali, Weishan, Yunnan province, 672400, China
| | - Zhaokui Luo
- Department of Ophthalmology, Jingdong Yi Autonomous County Hospital of Traditional Chinese Medicine, Yunnan province, 665700, China
| | - Dong Qiu
- Department of Ophthalmology, Dali Optometry Ophthalmic Hospital, Dali, Yunnan province, 671003, China
| | - Yingjie Luo
- Department of Ophthalmology, Dali University, Dali, Yunnan province, 665700, China
| | - Juan Li
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Dongxia Xing
- Department of Ophthalmology, Dali Optometry Ophthalmic Hospital, Dali, Yunnan province, 671003, China
| | - Maicong Ma
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Weigang Wu
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Shuguang Sun
- Department of Endocrine, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| |
Collapse
|
2
|
Liu JC, Zhang CL, Dong KY, Li MJ, Sun SG, Li CR. Advances in the research of plant-derived natural products against retinoblastoma. Int J Ophthalmol 2022; 15:1391-1400. [PMID: 36017045 DOI: 10.18240/ijo.2022.08.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Retinoblastoma (RB) is a highly aggressive ocular tumor, and due to socioeconomic and medical constraints, many children receive treatment only in the metaphase and advanced clinical stages, resulting in high rates of blindness and disability. Although several approaches exist in the treatment of RB, some children with the disease do not have satisfactory results because of various factors. Plant-derived natural products have shown definite therapeutic effects in the treatment of various tumors and are also widely used in the study of RB. We review plant-derived natural products used in the study of anti-RB to provide ideas for the clinical application of these drugs and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Jing-Chen Liu
- Department of Ophthalmology, Jiangxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, the Fourth Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330003, Jiangxi Province, China.,School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China.,School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Chun-Li Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command, Guangzhou 510010, Guangdong Province, China
| | - Kai-Ye Dong
- Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China
| | - Ming-Jun Li
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China
| | - Shu-Guang Sun
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China.,Department of Endocrinology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China
| | - Cai-Rui Li
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China.,Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China
| |
Collapse
|
3
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
4
|
Chabowska G, Barg E, Wójcicka A. Biological Activity of Naturally Derived Naphthyridines. Molecules 2021; 26:4324. [PMID: 34299599 PMCID: PMC8306249 DOI: 10.3390/molecules26144324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Marine and terrestrial environments are rich sources of various bioactive substances, which have been used by humans since prehistoric times. Nowadays, due to advances in chemical sciences, new substances are still discovered, and their chemical structures and biological properties are constantly explored. Drugs obtained from natural sources are used commonly in medicine, particularly in cancer and infectious diseases treatment. Naphthyridines, isolated mainly from marine organisms and terrestrial plants, represent prominent examples of naturally derived agents. They are a class of heterocyclic compounds containing a fused system of two pyridine rings, possessing six isomers depending on the nitrogen atom's location. In this review, biological activity of naphthyridines obtained from various natural sources was summarized. According to previous studies, the naphthyridine alkaloids displayed multiple activities, i.a., antiinfectious, anticancer, neurological, psychotropic, affecting cardiovascular system, and immune response. Their wide range of activity makes them a fascinating object of research with prospects for use in therapeutic purposes.
Collapse
Affiliation(s)
- Gabriela Chabowska
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Anna Wójcicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|