1
|
Lu N, Bu M, Zhang C, Gao Q, Wang X, Zhou X, Ding D, Zhang H. Development of a rapid detection method for enrofloxacin in food. Biotechnol Genet Eng Rev 2024; 40:3931-3949. [PMID: 37083187 DOI: 10.1080/02648725.2023.2204701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Develop the ic-ELISA rapid detection method of Enrofloxacin (ENR). Corresponding antibodies are obtained by animal immunity to identify their titer and specificity. The optimal coating time was obtained by indirect competition ELISA, and the antigen coating time, suitable coating concentration, primary antibody dilution factor, blocking solution blocking time, primary antibody reaction time and secondary antibody reaction time were optimized, and the specificity and accuracy of the method were evaluated. The ic-ELISA rapid detection method of ENR, IC50 was 9.13 ng/mL, and the linear detection range (IC20-IC80) was 4.16-20.03 ng/mL. The LOD limit is 2.11 ng/mL. The cross-reactivity rate of 9 fluoroquinolones was above 10%, and the average recovery rate was above 80%. The reason why the heterologous coating is more sensitive may be due to the fact that the piperazine group of ofloxacin is one less carbon atom than enrofloxacin, and ofloxacin is connected to the main ring by N and O hybridization, while enrofloxacin is connected to the main ring through a ternary ring, these two reasons may cause the charge density of extracyclic oxygen at the ofloxacin binding site to be higher than that of enrofloxacin, and the binding ability to antibodies is stronger. Therefore, when heterologous coating, the competitive inhibition rate against enrofloxacin is higher and the effect is better. The conclusion obtained through this experiment is that the detection method has strong broad spectrum and good sensitivity, and can quickly detect the total amount of enrofloxacin and its seven common fluoroquinolones in fish and eggs.
Collapse
Affiliation(s)
- Ning Lu
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Meichao Bu
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Chao Zhang
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Qianni Gao
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Xiaolu Wang
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Xiaohui Zhou
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Dejie Ding
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Huimin Zhang
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| |
Collapse
|
2
|
Wang W, Wu D, Ding J, Wang J, Meng J, Ming K, Li S, Qiu T, Liu J, Yang DA. Modified rougan decoction attenuates hepatocyte apoptosis through ameliorating mitochondrial dysfunction by upregulated SIRT1/PGC-1α signaling pathway. Poult Sci 2023; 102:102992. [PMID: 37595499 PMCID: PMC10457587 DOI: 10.1016/j.psj.2023.102992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
The modified rougan decoction (MRGD) compound formula has been proven a certain ability to relieve lipopolysaccharide-enrofloxacin (LPS-ENR)-induced liver oxidant injury in chickens. Recent advances have shown that mitochondrial dysfunction affects the development of many diseases, leading to increased interest in exploring its effects. Using LPS-ENR-injured in vivo and in vitro to further evaluate the effects of MRGD on mitochondrial structure and function, and emphasized further investigation of its molecular mechanism. After LPS-ENR treatment, the levels of inflammation and apoptosis markers were increased, along with higher mitochondrial injury. Results showed that MRGD reduced inflammatory factors expression and inhibited the nuclear translocation of NF-κB P65, reducing the inflammatory response in vivo and in vitro. Additionally, MRGD pretreatment inhibited mitochondrial dysfunction, mitochondrial oxidative stress, and mitochondrial pathway apoptosis by maintaining mitochondrial structure and function. Moreover, treatment with the inhibitor EX527 showed that MRGD promoted mitochondrial biogenesis ability through the SIRT1/PGC-1α pathway and interfered with mitochondrial dynamics, and activate Nrf2. In summary, MRGD played a key role in promoting mitochondrial function and thus alleviating hepatocyte apoptosis in vivo and in vitro at least in part.
Collapse
Affiliation(s)
- Wenjia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Desheng Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinxue Ding
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinli Wang
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, PR China
| | - Jinwu Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ke Ming
- College of Life Science, Hubei University, Wuhan 430062, PR China
| | - Siya Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianxin Qiu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Du J, Liu Q, Pan Y, Xu S, Li H, Tang J. The Research Status, Potential Hazards and Toxicological Mechanisms of Fluoroquinolone Antibiotics in the Environment. Antibiotics (Basel) 2023; 12:1058. [PMID: 37370377 DOI: 10.3390/antibiotics12061058] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Fluoroquinolone antibiotics are widely used in human and veterinary medicine and are ubiquitous in the environment worldwide. This paper recapitulates the occurrence, fate, and ecotoxicity of fluoroquinolone antibiotics in various environmental media. The toxicity effect is reviewed based on in vitro and in vivo experiments referring to many organisms, such as microorganisms, cells, higher plants, and land and aquatic animals. Furthermore, a comparison of the various toxicology mechanisms of fluoroquinolone antibiotic residues on environmental organisms is made. This study identifies gaps in the investigation of the toxic effects of fluoroquinolone antibiotics and mixtures of multiple fluoroquinolone antibiotics on target and nontarget organisms. The study of the process of natural transformation toward drug-resistant bacteria is also recognized as a knowledge gap. This review also details the combined toxicity effect of fluoroquinolone antibiotics and other chemicals on organisms and the adsorption capacity in various environmental matrices, and the scarcity of data on the ecological toxicology evaluation system of fluoroquinolone antibiotics is identified. The present study entails a critical review of the literature providing guidelines for the government to control the discharge of pollutants into the environment and formulate policy coordination. Future study work should focus on developing a standardized research methodology for fluoroquinolone antibiotics to guide enterprises in the design and production of drugs with high environmental biocompatibility.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Suzhou Fishseeds Biotechnology Co., Ltd., Suzhou 215138, China
- Hongze Fishseeds Biotechnology Co., Ltd., Huaian 223125, China
| | - Qinghua Liu
- Suzhou Fishseeds Biotechnology Co., Ltd., Suzhou 215138, China
- Hongze Fishseeds Biotechnology Co., Ltd., Huaian 223125, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huanxuan Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
4
|
Wang W, Shi Y, Qiu T, Meng J, Ding J, Wang W, Wu D, Li K, Liu J, Wu Y. Modified rougan decoction alleviates lipopolysaccharide-enrofloxacin-induced hepatotoxicity via activating the Nrf2/ARE pathway in chicken. Poult Sci 2022; 102:102404. [PMID: 36584418 PMCID: PMC9827067 DOI: 10.1016/j.psj.2022.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Liver injury plays a heavy burden on the chicken industry. Although modified rougan decoction is a prescription for the treatment of liver disease based on the classical prescription of rougan decoction (containing peony and licorice). However, the effect and mechanism of modified rougan decoction on the liver remain unclear. In this study, the effects of the water extracts (MRGD) and the alcohol precipitates of water extracts (MRGDE) against lipopolysaccharide-enrofloxacin (LPS-ENR)-induced hepatotoxicity were discussed in vivo and in vitro. The isolated hepatocytes and 128 one-day-old Hyline chickens were considered research objects. The indices of liver injury and oxidative stress were evaluated by hematoxylin and eosin (H&E) stained and the assay kits, and the nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway was detected by the RT-PCR, western blot, and immunofluorescence tests. All data were analyzed using the IBM SPSS 20.0 software. In vivo, the structural integrity of the liver was maintained, AST, ALT, and MDA levels were decreased, and antioxidant enzymes were increased, confirming that the oxidative stress was reduced and liver injury was alleviated. Correspondingly, MRGD and MRGDE were observed to improve cell viability and decrease lactate dehydrogenase (LDH) in vitro, and the cell oxidative damage was reduced. In addition, the nuclear translocation of Nrf2 was improved significantly, and the mRNA and protein expression levels of the related genes were upregulated. In conclusion, MRGD and MRGDE can exert a protective effect against LPS-ENR-induced hepatotoxicity by activating the Nrf2/ARE pathway, which might be a potential therapeutic prescription for preventing or treating liver injury. Notably, no significant difference was found between the 2 extracts, suggesting that a depth extraction method did not always improve the efficacy of natural medicine. Our results provided new insights into finding effective hepatoprotective medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | |
Collapse
|
5
|
Du J, Liu Q, Fu L. Metabolic and transcriptional disruption of American shad (Alosa sapidissima) by enrofloxacin in commercial aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2052-2062. [PMID: 34363172 DOI: 10.1007/s11356-021-15330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics, including enrofloxacin (ENR), are widely used for bacterial disease treatment in aquaculture in China, resulting in their discharge into various aquatic environments. Therefore, researchers have focused their attention on the harmful effects of antibiotics on aquatic animal metabolism. To understand the impacts of ENR on the metabolism of cultured American shad, the guts of these fish were sampled to test the toxicity of ENR through the combined results of metabolomics and transcriptomics analyses. In this study, adult American shad were exposed to ENR (200 mg/kg) for 30 days. The results showed that ENR could significantly (p< 0.05) increase the body weight of American shad. ENR exposure also contributed to the dysregulation of intestinal metabolism (approximately 49 metabolites and 963 genes). Multiomics analyses of the responses indicated that the specific metabolic dysregulation caused by ENR affects many signaling pathways, such as the glycolysis/gluconeogenesis and pentose phosphate pathways, which are known to be linked with body weight gain through protein and lipid accumulation. In conclusion, ENR treatment affected the metabolic system in the gut of American shad. The transcriptomics and metabolomics analysis results provide essential data for evaluating antibiotic hazards in the guts of aquatic organisms.
Collapse
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
- Hongze Fishseeds Bio-technology, LTD, Huai'an, 223125, China.
- Suzhou Fishseeds Bio-technology, LTD, Suzhou, 215138, China.
- College of Textile and Clothing Engineering of Soochow University, Suzhou, 215006, China.
| | - Qinghua Liu
- Hongze Fishseeds Bio-technology, LTD, Huai'an, 223125, China
- Suzhou Fishseeds Bio-technology, LTD, Suzhou, 215138, China
| | - Li Fu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|