1
|
Gao J, Wang S, Tang G, Wang Z, Wang Y, Wu Q, Yang X, Liu Y, Hu L, He B, Qu G, Jiang G. Inflammation and accompanied disrupted hematopoiesis in adult mouse induced by rare earth element nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:155416. [PMID: 35489480 DOI: 10.1016/j.scitotenv.2022.155416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Rare earth element nanoparticles (REE NPs) or agents have been used extensively in various fields. Human exposure to REE NPs is an increasing concern. To date, REE NP-mediated comprehensive immune responses after incorporation into the body remain unclear. In our study, using gadolinium oxide NPs (Gd2O3) as a typical REE NP, we systematically investigated immune responses in vivo. The liver and spleen were the main sites where Gd2O3 retained and accumulated, while Gd2O3 content per unit tissue mass in the spleen was 4.4 times higher than that in the liver. Gd2O3 increased the number of monocyte-derived macrophages and myeloid-derived dendritic cells (M-DCs) in the liver. In the spleen, Gd2O3 caused infiltration of neutrophils, M-DCs, and B cells. The accumulation of Gd2O3 in the liver or spleen also contributed to an increased concentration of cytokines in peripheral blood. In both the bone marrow and spleen, Gd2O3 led to increased populations of hematopoietic stem cells (HSCs), multipotent progenitors, and common lymphoid progenitors. Compared to the decreased monocytes in peripheral blood on day 2, a significant decrease of circulating lymphocytes on day 7 was still observed, suggesting the exposure duration led to variable effects. This might be explained by the sustained accumulation of Gd2O3 in the liver and spleen. Together, our study systemically depicted the alterations in mature immune alterations together with hematopoiesis in both myeloid and lymphoid lineages induced by Gd2O3 exposure. Our findings will facilitate a comprehensive understanding of the interactions of immune system with REE NPs in vivo.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y, Xu X, Lei W, Yang Z, Ahmed S, Zhang H, Zhao G. Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 2022; 14:100236. [PMID: 35341094 PMCID: PMC8943324 DOI: 10.1016/j.mtbio.2022.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
Collapse
|