1
|
Liu L, Xiao B, Hirukawa A, Smith HW, Zuo D, Sanguin-Gendreau V, McCaffrey L, Nam AJ, Muller WJ. Ezh2 promotes mammary tumor initiation through epigenetic regulation of the Wnt and mTORC1 signaling pathways. Proc Natl Acad Sci U S A 2023; 120:e2303010120. [PMID: 37549258 PMCID: PMC10438390 DOI: 10.1073/pnas.2303010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
The regulation of gene expression through histone posttranslational modifications plays a crucial role in breast cancer progression. However, the molecular mechanisms underlying the contribution of histone modification to tumor initiation remain unclear. To gain a deeper understanding of the role of the histone modifier Enhancer of Zeste homology 2 (Ezh2) in the early stages of mammary tumor progression, we employed an inducible mammary organoid system bearing conditional Ezh2 alleles that faithfully recapitulates key events of luminal B breast cancer initiation. We showed that the loss of Ezh2 severely impairs oncogene-induced organoid growth, with Ezh2-deficient organoids maintaining a polarized epithelial phenotype. Transcriptomic profiling showed that Ezh2-deficient mammary epithelial cells up-regulated the expression of negative regulators of Wnt signaling and down-regulated genes involved in mTORC1 (mechanistic target of rapamycin complex 1) signaling. We identified Sfrp1, a Wnt signaling suppressor, as an Ezh2 target gene that is derepressed and expressed in Ezh2-deficient epithelium. Furthermore, an analysis of breast cancer data revealed that Sfrp1 expression was associated with favorable clinical outcomes in luminal B breast cancer patients. Finally, we confirmed that targeting Ezh2 impairs mTORC1 activity through an indirect mechanism that up-regulates the expression of the tumor suppressor Pten. These findings indicate that Ezh2 integrates the mTORC1 and Wnt signaling pathways during early mammary tumor progression, arguing that inhibiting Ezh2 or therapeutically targeting Ezh2-dependent programs could be beneficial for the treatment of early-stage luminal B breast cancer.
Collapse
Affiliation(s)
- Linshan Liu
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Bin Xiao
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Alison Hirukawa
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Harvey W. Smith
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Luke McCaffrey
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Oncology, McGill University, Montreal, QCH3A0G4, Canada
| | - Alice Jisoo Nam
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
2
|
Nardone GG, Spedicati B, Concas MP, Santin A, Morgan A, Mazzetto L, Battaglia-Parodi M, Girotto G. Identifying missing pieces in color vision defects: a genome-wide association study in Silk Road populations. Front Genet 2023; 14:1161696. [PMID: 37359372 PMCID: PMC10288324 DOI: 10.3389/fgene.2023.1161696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Color vision defects (CVDs) are conditions characterized by the alteration of normal trichromatic vision. CVDs can arise as the result of alterations in three genes (OPN1LW, OPN1MW, OPN1SW) or as a combination of genetic predisposition and environmental factors. To date, apart from Mendelian CVDs forms, nothing is known about multifactorial CVDs forms. Materials and Methods: Five hundred and twenty individuals from Silk Road isolated communities were genotyped and phenotypically characterized for CVDs using the Farnsworth D-15 color test. The CVDs traits Deutan-Protan (DP) and Tritan (TR) were analysed. Genome Wide Association Study for both traits was performed, and results were corrected with a False Discovery Rate linkage-based approach (FDR-p). Gene expression of final candidates was investigated using a published human eye dataset, and pathway analysis was performed. Results: Concerning DP, three genes: PIWIL4 (FDR-p: 9.01*10-9), MBD2 (FDR-p: 4.97*10-8) and NTN1 (FDR-p: 4.98*10-8), stood out as promising candidates. PIWIL4 is involved in the preservation of Retinal Pigmented Epithelium (RPE) homeostasis while MBD2 and NTN1 are both involved in visual signal transmission. With regards to TR, four genes: VPS54 (FDR-p: 4.09*10-9), IQGAP (FDR-p: 6,52*10-10), NMB (FDR-p: 8.34*10-11), and MC5R (FDR-p: 2.10*10-8), were considered promising candidates. VPS54 is reported to be associated with Retinitis pigmentosa; IQGAP1 is reported to regulate choroidal vascularization in Age-Related Macular Degeneration; NMB is involved in RPE homeostasis regulation; MC5R is reported to regulate lacrimal gland function. Discussion: Overall, these results provide novel insights regarding a complex phenotype (i.e., CVDs) in an underrepresented population such as Silk Road isolated communities.
Collapse
Affiliation(s)
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Lorenzo Mazzetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
3
|
Chen C, Zhang Y, Liu Y, Hang L, Yang J. Expression of Tumor Suppressor SFRP1 Predicts Biological Behaviors and Prognosis: A Potential Target for Oral Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12081034. [PMID: 35892344 PMCID: PMC9332777 DOI: 10.3390/biom12081034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Genomic instability is implicated in the initiation and progression of oral squamous cell carcinoma (OSCC). Tumor suppressor Secreted Frizzled-Related Protein 1 (SFRP1) may participate in the aberrant evolution of OSCC, the intrinsic molecular mechanisms of which may provide effective therapeutic targets. Methods: A bioinformatics analysis was carried out on a publicly available database using R language to map the prognostic value, immune infiltration and enrichment of SFRP1 expression. Subsequently, in vitro experiments were conducted to unveil the biological function of SFRP1. Results: SFRP1 was found to be ubiquitously lowly expressed in OSCC using a Wilcoxon rank-sum test. Univariate analysis confirmed that those patients characterized by a low SFRP1 expression were significantly associated with advanced T-stage, clinical stage and poor mortality (p < 0.05). Furthermore, SFRP1 displayed a positive performance in tumor immune infiltration, especially in mast cells. Functional annotations indicated that highly expressed SFRP1 was associated with membrane potential and passive transmembrane transporter activity and it was mainly enriched in calcium pathway and neuroactive ligand−receptor interaction. In vitro, the overexpression of SFRP1 inhibited its proliferation, migration, and invasion and resulted in G0+G1 phase arrest within Cal27 cells (p < 0.05). Conclusions: The bioinformation data suggest that SFRP1 expression provides an insight into the risk and prognostic stratification in OSCC. SFRP1 was validated as a potential biomarker with anticarcinogenic behaviors for use in targeted therapy.
Collapse
Affiliation(s)
- Chun Chen
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.C.); (Y.Z.); (Y.L.)
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Yifei Zhang
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.C.); (Y.Z.); (Y.L.)
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Yupeng Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.C.); (Y.Z.); (Y.L.)
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Lei Hang
- Business School, Tianhua College, Shanghai Normal University, Shanghai 201815, China
- Correspondence: (L.H.); (J.Y.)
| | - Jun Yang
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.C.); (Y.Z.); (Y.L.)
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
- Correspondence: (L.H.); (J.Y.)
| |
Collapse
|
4
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|