1
|
Saginova D, Tashmetov E, Kamyshanskiy Y, Tuleubayev B, Rimashevskiy D. Evaluation of Bone Regenerative Capacity in Rabbit Femoral Defect Using Thermally Disinfected Bone Human Femoral Head Combined with Platelet-Rich Plasma, Recombinant Human Bone Morphogenetic Protein 2, and Zoledronic Acid. Biomedicines 2023; 11:1729. [PMID: 37371824 DOI: 10.3390/biomedicines11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This research aimed to assess the effect of bone allograft combined with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (Zol) on bone formation. A total of 96 rabbits were used, and femoral bone defects (5 mm) were created. The rabbits were divided into four groups: (1) bone allograft with PRP (AG + PRP), (2) bone allograft with rhBMP-2 5 μg (AG + BMP-2), (3) bone allograft with Zol 5 μg (AG + Zol), and (4) bone allograft (AG). A histopathological examination was performed to evaluate bone defect healing after 14, 30, and 60 days. The new bone formation and neovascularization inside the bone allograft was significantly greater in the AG + PRP group compared to AG and AG + Zol groups after 14 and 30 days (p < 0.001). The use of bone allograft with rhBMP-2 induced higher bone formation compared to AG and AG + Zol groups on days 14 and 30 (p < 0.001), but excessive osteoclast activity was observed on day 60. The local co-administration of Zol with a heat-treated allograft inhibits allograft resorption as well as new bone formation at all periods. In conclusion, this study demonstrated that PRP and rhBMP-2, combined with a Marburg bone allograft, can significantly promote bone formation in the early stage of bone defect healing.
Collapse
Affiliation(s)
- Dina Saginova
- Center for Applied Scientific Research, National Scientific Center of Traumatology and Orthopaedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan
| | - Elyarbek Tashmetov
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Yevgeniy Kamyshanskiy
- Pathology Unit of the University Clinic, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Berik Tuleubayev
- Department of Surgical Diseases, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopaedics, Peoples' Friendship University of Russia, Moscow 101000, Russia
| |
Collapse
|
2
|
Huan Y, Zhou D, Wu X, He X, Chen H, Li S, Jia B, Dou Y, Fei X, Wu S, Wei J, Fei Z, Xu T, Fei F. 3D bioprinted autologous bone particle scaffolds for cranioplasty promote bone regeneration with both implanted and native BMSCs. Biofabrication 2023; 15. [PMID: 36812580 DOI: 10.1088/1758-5090/acbe21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Although autologous bone (AB) grafting is considered to be the gold standard for cranioplasty, unresolved problems remain, such as surgical-site infections and bone flap absorption. In this study, an AB scaffold was constructed via three-dimensional (3D) bedside-bioprinting technology and used for cranioplasty. To simulate the skull structure, a polycaprolactone shell was designed as an external lamina, and 3D-printed AB and a bone marrow-derived mesenchymal stem cell (BMSC) hydrogel was used to mimic cancellous bone for bone regeneration. Ourin vitroresults showed that the scaffold exhibited excellent cellular affinity and promoted osteogenic differentiation of BMSCs in both two-dimensional and 3D culture systems. The scaffold was implanted in beagle dog cranial defects for up to 9 months, and the scaffold promoted new bone and osteoid formation. Furtherin vivostudies indicated that transplanted BMSCs differentiated into vascular endothelium, cartilage, and bone tissues, whereas native BMSCs were recruited into the defect. The results of this study provide a method for bedside bioprinting of a cranioplasty scaffold for bone regeneration, which opens up another window for clinical applications of 3D printing in the future.
Collapse
Affiliation(s)
- Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China
- Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, People's Republic of China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
3
|
Kolokotroni SM, Lamprinos D, Goutas N, Kapetanakis EI, Kontzoglou K, Perrea D, Tomos P. Platelet-Rich Plasma for Pleurodesis: An Experimental Study in Rabbits. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1842. [PMID: 36557044 PMCID: PMC9785005 DOI: 10.3390/medicina58121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Background and Objectives: This study was designed to evaluate platelet-rich plasma (PRP) as a method of pleurodesis in a rabbit model. Pleurodesis with PRP was compared against the gold-standard use of talc. The secondary evaluation assessed the ideal time for achieving pleurodesis. Materials and Methods: 25 healthy New Zealand white rabbits were assigned to three groups, as follows: 12 animals in the first and second groups, as well as one animal with no intervention in the final group, which was used as a control. The talc pleurodesis group (baseline) underwent pleurodesis with sterile talc, which is the gold-standard sclerosing agent used for pleurodesis. The PRP group underwent pleurodesis using autologous PRP. The last group had one rabbit with no intervention. A total of 12 rabbits (n = 6 for the talc pleurodesis group and n = 6 for the PRP group) were sacrificed 3 days (72 h) after the intervention, and 12 rabbits (n = 6 for the talc pleurodesis group and n = 6 for the PRP group) were sacrificed 6 days (144 h) after the intervention. In both the talc and PRP group, FBC and CRP were measured before the intervention and in 3 or 6 days afterwards, respectively. The pleura and the lungs were evaluated histopathologically. Results: Macroscopically, there were no statistically significant differences between the two groups. In terms of microscopic findings, there were no statistically significant differences in inflammatory reactions provoked in the visceral and parietal pleura between the PRP and talc. In addition, with talc pleurodesis, a foreign-body reaction was observed in about 50% of the cases, which was not observed with PRP. In terms of inflammation between 3 and 6 days, there were no statistically significant differences with PRP, there was only a statistically significant difference between 3 and 6 days regarding the parietal pleura in the talc group. Conclusions: The instillation of autologous PRP in the pleural cavity shows promise in achieving pleurodesis. The efficacy of PRP as a pleurodesis agent should be examined further.
Collapse
Affiliation(s)
- Styliani Maria Kolokotroni
- Department of Cardiothoracic Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Laboratory of Experimental Surgery and Surgical Research “N. S. Christeas”, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Nikolaos Goutas
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Emmanouil I. Kapetanakis
- Department of Thoracic Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Kontzoglou
- Laboratory of Experimental Surgery and Surgical Research “N. S. Christeas”, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research “N. S. Christeas”, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Periklis Tomos
- Department of Thoracic Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
4
|
Liu W, Huang Y, Liu D, Zeng T, Wang J, Li A, Wang D, Wang X. The Combination of Platelet Rich Plasma Gel, Human Umbilical Mesenchymal Stem Cells and Nanohydroxyapatite/polyamide 66 Promotes Angiogenesis and Bone Regeneration in Large Bone Defect. Tissue Eng Regen Med 2022; 19:1321-1336. [PMID: 36074328 PMCID: PMC9679130 DOI: 10.1007/s13770-022-00471-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In the present study, a novel tissue engineering bone graft including platelet rich plasma gel (PRP gel), human umbilical mesenchymal stem cells (HUMSCs) and nanohydroxyapatite/polyamide 66 (nHA-PA66) was constructed. We explored whether the composite scaffolds could enhance the angiogenesis and bone repair capacity in rat femoral large bone defect (LBD). This study aimed to provide evidence for the clinical application of the composite scaffold in LBD treatment. METHODS PRP was prepared, the platelets and growth factors were measured. HUMSCs were isolated and identified. the osteogenic capacity of PRP in vitro was measured. Then HUMSCs-PRP-gel/nHA-PA66 composite scaffolds were synthesized and observed. The proliferation and osteogenesis differentiation of HUMSCs on the composite scaffold was measured. The angiogenic capacity of PRP in vitro was measured by capillary-like tube formation assay. Finally, the angiogenesis and bone repair capacity of the composite scaffolds was measured in rat LBD. RESULTS PRP contained high level of platelets and growth factors after activation, and promoted osteogenic and angiogenic differentiation in vitro. The HUMSCs-PRP-gel/nHA-PA66 composite scaffold was porosity and promoted the proliferation and osteogenesis differentiation of HUMSCs. At 12th weeks, more micro-vessels and new bone were formed around the composite scaffolds compared with other groups, the defect was almost repaired. CONCLUSION Our study for the first time identified that the combination of PRP gel, HUMSCs and nHA-PA66 scaffold could significantly promote angiogenesis and bone regeneration in rat LBD, which may have implications for its further application in clinical LBD treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yong Huang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Daqian Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Teng Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jingzhe Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Ang Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dawei Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Xiaoyu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Novel Techniques and Future Perspective for Investigating Critical-Size Bone Defects. Bioengineering (Basel) 2022; 9:bioengineering9040171. [PMID: 35447731 PMCID: PMC9027954 DOI: 10.3390/bioengineering9040171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023] Open
Abstract
A critical-size bone defect is a challenging clinical problem in which a gap between bone ends will not heal and will become a nonunion. The current treatment is to harvest and transplant an autologous bone graft to facilitate bone bridging. To develop less invasive but equally effective treatment options, one needs to first have a comprehensive understanding of the bone healing process. Therefore, it is imperative to leverage the most advanced technologies to elucidate the fundamental concepts of the bone healing process and develop innovative therapeutic strategies to bridge the nonunion gap. In this review, we first discuss the current animal models to study critical-size bone defects. Then, we focus on four novel analytic techniques and discuss their strengths and limitations. These four technologies are mass cytometry (CyTOF) for enhanced cellular analysis, imaging mass cytometry (IMC) for enhanced tissue special imaging, single-cell RNA sequencing (scRNA-seq) for detailed transcriptome analysis, and Luminex assays for comprehensive protein secretome analysis. With this new understanding of the healing of critical-size bone defects, novel methods of diagnosis and treatment will emerge.
Collapse
|
6
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
7
|
Oktaş B, Çırpar M, Şanlı E, Canbeyli İD, Bozdoğan Ö. The effect of the platelet-rich plasma on osteogenic potential of the periosteum in an animal bone defect model. Jt Dis Relat Surg 2021; 32:668-675. [PMID: 34842099 PMCID: PMC8650655 DOI: 10.52312/jdrs.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives
This study aims to investigate whether plasma-rich plasma (PRP) enhances the osteogenic potential of periosteal grafts used to repair bone defects and maintains both histologically and biomechanically more durable bone tissue. Materials and methods
A standard bone defect was formed to the left femurs of 54 Sprague-Dawley rats and three groups were formed. In the first group (n=18), no periosteal repair was done for bone defect. In the second group (n=18), periosteal graft tissue was sutured to cover the defect entirely. In the third group (n=18), before periosteal repair, a 1 mL of PRP fibrin was applied into the bone defect. All femoral specimens were compared histologically at four and six weeks and biomechanically by three-point bending test at six weeks after treatment. Results
In the PRP applied group, healing of the bone defect at four weeks was significantly better than the other groups in terms of histological new bone formation (p<0.05). At six weeks, new bone formation in both of the periosteum preserved groups was superior to the first group (p<0.05, for both). There was no statistically significant difference between the second and third groups at the end of the sixth week in the biomechanical analysis, although both groups were significantly stronger than the first group (p<0.05). Conclusion
Stimulation of the periosteum with PRP application causes early osteogenic differentiation of precursor cells. Although, at biomechanical basis, PRP application does not create any significant difference, in the recovery of the bone defects at very early period, application of PRP may play a role to accelerate fracture healing and to decrease nonunions.
Collapse
Affiliation(s)
- Birhan Oktaş
- Kırıkkale Üniversitesi Tıp Fakültesi Ortopedi ve Travmatoloji Anabilim Dalı, 71450 Yahşihan, Kırıkkale, Türkiye.
| | | | | | | | | |
Collapse
|
8
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|