1
|
Wang PH, Wang Y, Guo YY, Ma ZH, Wu C, Xing L. Ibuprofen modulates macrophage polarization by downregulating poly (ADP-ribose) polymerase 1. Int Immunopharmacol 2024; 143:113502. [PMID: 39488918 DOI: 10.1016/j.intimp.2024.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Ibuprofen, a non-steroidal drug, is well known for its anti-inflammatory activity. The effects of ibuprofen on the polarization of macrophages are still not clear. Herein, we used THP-1 monocyte-derived macrophages to find that ibuprofen has inhibitory effects on the polarization of both classically activated M1 macrophages and alternatively activated M2 macrophages by downregulating NF-κB and JAK/STAT signaling pathways. During M1 or M2 polarization, ibuprofen also downregulated the expression of poly (ADP-ribose) polymerase 1 (PARP1). Furthermore, knockdown of PARP1 by either small interfering RNA or PARP1 inhibitor PJ34 can exert inhibitory effects on the polarization of M1 and M2, and alter the immune response of macrophages to the infection of Mycobacterium tuberculosis H37Ra. The results demonstrate that PARP1 plays a regulatory role in the ibuprofen-modulated polarization of macrophage, revealing the interplay between the DNA repair response process and macrophage polarization.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Yan Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Zi-Hui Ma
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| |
Collapse
|
2
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Long Y, Huang F, Zhang J, Zhang J, Cheng R, Zhu L, Chen Q, Yang D, Pan X, Yang W, Qin M, Huang J. Identification of SUMOylation-related signature genes associated with immune infiltration in ulcerative colitis through bioinformatics analysis and experimental validation. Gene 2024; 935:148996. [PMID: 39395728 DOI: 10.1016/j.gene.2024.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic inflammatory disorder challenging to diagnose clinically. We focused on identifying and validating SUMOylation-related signature genes in UC and their association with immune infiltration. METHODS Five eligible gene expression profiles were selected from the Gene Expression Omnibus (GEO) database and merged into a single dataset comprising 260 UC patients and 76 healthy controls (HC). Differentially expressed genes (DEGs) were identified, and these were intersected with SUMOylation-related genes to obtain differentially expressed SUMOylation-related genes (DESRGs). Next, we identify the signature genes and validate them through comprehensive analyses employing GO, KEGG, GSVA, Lasso-cox regression, ROC curves, and clustering analysis. The infiltrating immune cells were analyzed using the CIBERSORT algorithm and Pearson correlation analysis. Finally, in vitro and in vivo experiments validated the identified signature genes. RESULTS PALMD, THRB, MAGED1, PARP1, and SLC16A1 were identified. Next, an excellent predictive model for UC was established and distinct subgroups of patients associated with SUMOylation were identified. Moreover, the NF-κB signaling pathway likely plays a pivotal role in the regulation of SUMOylation in UC. Additionally, we validated that the alterations in PALMD, THRB, and MAGED1 expression in LPS-induced Caco-2 cells concurred with our bioinformatics findings, particularly demonstrating statistically significant differences in PALMD and THRB expression. Finally, in a DSS-induced mouse colitis model, we observed a significant upregulation of PALMD expression. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation. CONCLUSION This study comprehensively elucidates the biological roles of SUMOylation-related genes in UC, identifying PALMD, MAGED1, THRB, PARP1, and SLC16A1 as signature genes that represent promising biomarkers for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Long
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China; Department of Gastroenterology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, People's Republic of China
| | - Feihong Huang
- Spine and Osteopathy Ward, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Juan Zhang
- Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou 412000, People's Republic of China
| | - Jinxiu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Ruoxi Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Liye Zhu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Qiuling Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Dan Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Xiaoping Pan
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Wenfang Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| |
Collapse
|
4
|
Böhi F, Hottiger MO. Expanding the Perspective on PARP1 and Its Inhibitors in Cancer Therapy: From DNA Damage Repair to Immunomodulation. Biomedicines 2024; 12:1617. [PMID: 39062190 PMCID: PMC11275100 DOI: 10.3390/biomedicines12071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This review explores the expanding roles of PARP1, highlighting its crucial interplay with the immune system during tumorigenesis. We discuss PARP1's immunomodulatory effects in macrophages and T cells, with a particular focus on cytokine expression. Understanding these immunomodulatory roles of PARP1 not only holds promise for enhancing the efficacy of PARP inhibitors in cancer therapy but also paves the way for novel treatment regimens targeting immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Zhu L, Xie Z, Yang G, Zhou G, Li L, Zhang S. Stanniocalcin-1 Promotes PARP1-Dependent Cell Death via JNK Activation in Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304123. [PMID: 38088577 PMCID: PMC10837357 DOI: 10.1002/advs.202304123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Stanniocalcin-1 (STC1) is upregulated by inflammation and modulates oxidative stress-induced cell death. Herein, the function of STC1 in colitis and stress-induced parthanatos, a newly identified type of programmed necrotic cell death dependent on the activation of poly-ADP ribose polymerase-1 (PARP1) is investigated. Results show that STC1 expression is markedly increased in the inflamed colonic mucosa of Crohn's disease (CD) patients and chemically-induced mice colitis models. Evaluation of parthanatos severity and pro-inflammatory cytokine expression shows that intestinal-specific Stc1 knockout (Stc1INT-KO ) mice are resistant to dextran sulfate sodium (DSS)-induced colitis and exhibit lower disease severity. STC1-overexpressing cells show an increased degree of parthanatos and proinflammatory cytokine expression, whereas STC1-knockout cells show a decreased degree of parthanatos. Co-immunoprecipitation, mass spectrometry, and proteomic analyses indicate that STC1 interacts with PARP1, which activates the JNK pathway via PARP1-JNK interactions. Moreover, inhibition of PARP1 and JNK alleviates parthanatos and inflammatory injuries triggered by STC1 overexpression. Finally, following restoration of Stc1 and Parp1 expression by adeno-associated viruses, and overexpression of Stc1 and Parp1 aggravated DSS-induced colitis in Stc1INT-KO mice. In conclusion, STC1 mediates oxidative stress-associated parthanatos and aggravates inflammation via the STC1-PARP1-JNK interactions and subsequent JNK pathway activation in CD pathogenesis.
Collapse
Affiliation(s)
- Liguo Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Zhuo Xie
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Guang Yang
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Gaoshi Zhou
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Li Li
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Shenghong Zhang
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| |
Collapse
|
6
|
Wu D, Zhang Y, Zou B, Lu Y, Cao H. Shaoyao decoction alleviates TNBS-induced ulcerative colitis by decreasing inflammation and balancing the homeostasis of Th17/Treg cells. BMC Complement Med Ther 2023; 23:424. [PMID: 38001450 PMCID: PMC10668496 DOI: 10.1186/s12906-023-04237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent and non-specific inflammatory condition that mainly affects the bowels and has challenging treatment. UC has a growing incidence and significantly affects the well-being of patients. Many medications used to treat UC can disrupt the metabolism and immune system homeostasis, frequently leading to significant adverse effects. Hence, exploring alternative therapies, such as traditional Chinese medicine and probiotics, has recently emerged as a primary research hotspot owing to their safety. Although the therapeutic mechanism of Shaoyao decoction has not been clarified, it has demonstrated a beneficial clinical effect on UC. AIM This study aimed to assess the effect of Shaoyao decoction on a rat model of UC and investigate its underlying mechanisms. METHODS The rat model of UC was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The extent of damage to the intestines was assessed using the disease activity index (DAI), colonic mucosa damage index (CMDI), and histological scores. Immunohistochemistry was employed to detect the tissue levels of interleukin (IL)-17, transforming growth factor (TGF)-β1, and IL-10. Additionally, the proportion of Th17 and Treg cells was detected using flow cytometry. In colon tissue, the levels of forkhead box (Fox)p3, RAR-related orphan receptor (ROR)γt, IL-6, p-STAT3, and STAT3 proteins were quantified by Western blotting. RESULTS Treatment with Shaoyao decoction enhanced the overall health of rats and reduced colonic damage. Additionally, Shaoyao decoction significantly alleviated the severity of DAI, CMDI, and HS. The proportion of Th17 cells was reduced, and the proportion of Treg cells was increased by Shaoyao decoction. The expression of IL-17 and RORγt was suppressed by Shaoyao decoction, while the expression of IL-10, TGF-β1, and Foxp3 was increased. The expression of IL-6, p-STAT3, and STAT3 was decreased by Shaoyao decoction. CONCLUSION The Shaoyao decoction alleviates the symptoms of TNBS-induced UC by decreasing inflammation and mitigating intestinal damage while preserving the balance between Th17 and Treg. Shaoyao decoction modulates the IL-6/STAT3 axis, thereby regulating the balance between Th17 and Treg cells.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yu Zhang
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Bo Zou
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Lu
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hui Cao
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
7
|
Novak EA, Crawford EC, Mentrup HL, Griffith BD, Fletcher DM, Flanagan MR, Schneider C, Firek B, Rogers MB, Morowitz MJ, Piganelli JD, Wang Q, Mollen KP. Epithelial NAD + depletion drives mitochondrial dysfunction and contributes to intestinal inflammation. Front Immunol 2023; 14:1231700. [PMID: 37744380 PMCID: PMC10512956 DOI: 10.3389/fimmu.2023.1231700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction We have previously demonstrated that a pathologic downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α) within the intestinal epithelium contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism underlying downregulation of PGC1α expression and activity during IBD is not yet clear. Methods Mice (male; C57Bl/6, Villincre/+;Pgc1afl/fl mice, and Pgc1afl/fl) were subjected to experimental colitis and treated with nicotinamide riboside. Western blot, high-resolution respirometry, nicotinamide adenine dinucleotide (NAD+) quantification, and immunoprecipitation were used to in this study. Results We demonstrate a significant depletion in the NAD+ levels within the intestinal epithelium of mice undergoing experimental colitis, as well as humans with ulcerative colitis. While we found no decrease in the levels of NAD+-synthesizing enzymes within the intestinal epithelium of mice undergoing experimental colitis, we did find an increase in the mRNA level, as well as the enzymatic activity, of the NAD+-consuming enzyme poly(ADP-ribose) polymerase-1 (PARP1). Treatment of mice undergoing experimental colitis with an NAD+ precursor reduced the severity of colitis, restored mitochondrial function, and increased active PGC1α levels; however, NAD+ repletion did not benefit transgenic mice that lack PGC1α within the intestinal epithelium, suggesting that the therapeutic effects require an intact PGC1α axis. Discussion Our results emphasize the importance of PGC1α expression to both mitochondrial health and homeostasis within the intestinal epithelium and suggest a novel therapeutic approach for disease management. These findings also provide a mechanistic basis for clinical trials of nicotinamide riboside in IBD patients.
Collapse
Affiliation(s)
- Elizabeth A. Novak
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Erin C. Crawford
- Division of Gastroenterology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Heather L. Mentrup
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Brian D. Griffith
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - David M. Fletcher
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | | - Corinne Schneider
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Matthew B. Rogers
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jon D. Piganelli
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Qian Wang
- Department of Pathology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin P. Mollen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
8
|
He L, Yan X, Wen S, Zhong Z, Hou Z, Liu F, Mi H. Paris polyphylla extract attenuates colitis in mice by regulating PPAR-γ mediated Treg/Th17 balance. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116621. [PMID: 37164256 DOI: 10.1016/j.jep.2023.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris polyphylla Sm. (P.P), is a widely-used traditional Chinese medicine (TCM) in the treatment of wound, throat sores and snakebites. Furthermore, P.P was recorded as an anti-inflammatory drug by the Chinese Pharmacopoeia. AIM OF THE STUDY We sought to decipher the anti-inflammatory effect of P.P on ulcerative colitis (UC); specifically, to explore whether P.P attenuates colitis by restoring the regulatory T cells (Tregs) and T helper 17 (Th17) cells balance and its mechanism. MATERIAL AND METHODS We treated experimental colitis mice with extracts of Paris polyphylla (EPP). The percentage of Tregs and Th17 cells were measured using flow cytometry, and their secreted cytokines levels were evaluated employing ELISA. The expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in colon tissues was detected using immunofluorescence. Furthermore, GW9662, a PPAR-γ antagonist, was used to validate the mechanism of EPP in restoring the Treg/Th17 balance. RESULTS The EPP effectively alleviated the clinical symptoms and inflammatory cytokine levels in mice with colitis. EPP treatment also restored the impaired Treg/Th17 balance in mice. Furthermore, EPP treatment promoted PPAR-γ expression and reduced HIF-1α and p-STAT3 expression in colon tissues, whereas PPAR-γ inhibition blocked the effects of EPP in mice models. CONCLUSION Our study indicates that EPP exhibit excellent anti-inflammatory properties via restoring PPAR-γ/STAT3/HIF-1α axis-mediated Treg/Th17 balance in colitis mice. Hence, P. polyphylla is a promising medicinal plant-based alternative for managing colitis that requires further clinical validation.
Collapse
Affiliation(s)
- Long He
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xingrui Yan
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuting Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhuotai Zhong
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China.
| | - Zhengkun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
9
|
Singla S, Kumar V, Jena G. 3-aminobenzamide protects against colitis associated diabetes mellitus in male BALB/c mice: Role of PARP-1, NLRP3, SIRT-1, AMPK. Biochimie 2023; 211:96-109. [PMID: 36934779 DOI: 10.1016/j.biochi.2023.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Diabetes and ulcerative colitis are chronic diseases associated with inflammation, dysbiosis, impaired immune function and infection risk. In patients with type 1 diabetes enteropathy, gastrointestinal manifestations are seen relatively frequently. The current investigation was aimed to decipher the role of 3-aminobenzamide (3-AB) in ulcerative colitis associated Diabetes mellitus in male BALB/c mice. Ulcerative colitis associated Diabetes mellitus experimental murine model was developed by 3 cycles (each cycle consists of seven days) of Dextran Sulphate Sodium (DSS; 2.5 %w/v) with recovery time of one week in-between along with Streptozotocin (STZ; 40 mg/kg; i.p. x 5 days; consecutively) was given at the Ist recovery period. As an intervention, 3-aminobenzamide (3-AB; 5 and 10 mg/kg; intraperitoneally) was given beginning with the second DSS cycle and then continue till sacrifice. 3-aminobenzamide treatment significantly reduced the severity of colitis-associated diabetes mellitus by altering the expression of a number of molecular targets, including sirtuin 1 (SIRT 1), proliferating cell nuclear antigen (PCNA), poly[ADP-ribose] polymerase 1 (PARP-1), cysteine protease-1 (Caspase-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NFkBp65), NLR family pyrin domain containing 3 (NLRP3), insulin growth factor 1 (IGF-1), interleukin-1β (IL-1β), interleukin-10 (IL-10) and β-catenin. Further, 3-AB at high dose (10 mg/kg; intraperitoneally) significantly restored the epithelial tight junction integrity as evaluated by TEM analysis and restored occludin expression analysed by immunofluorescence analysis. Present study revealed that the high dose of 3-AB (10 mg/kg; intraperitoneally) showed significant and consistent protective effects against colitis associated Diabetes mellitus by modulating various molecular targets.
Collapse
Affiliation(s)
- Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| | - Vinod Kumar
- High Resolution Transmission Electron Microscopy Facility, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| |
Collapse
|
10
|
[WDSUB1 knockdown alleviates dextran sulfate sodium-induced colitis in mice by inhibiting nuclear factor-κB signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1119-1125. [PMID: 36073209 PMCID: PMC9458524 DOI: 10.12122/j.issn.1673-4254.2022.08.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the effect of WDSUB1 on dextran sulfate sodium (DSS)-induced inflammatory colon injury in mice and the underlying mechanism. METHODS Different WDSUB1 siRNA sequences were transfected into mouse fibroblast L929 cells and the optimal sequence was selected by Western blotting. Twelve male C57BL/6 mice were randomized into two groups for injection of siWDSUB1 or siControl via the caudal vein, followed by treatment with 2.5% DSS in drinking water to establish mouse models of DSS- induced colitis (n=6). The expression level of WDSUB1 in the colon tissue of the mice was detected with Western blotting and RT-PCR, the changes in body weight and fecal condition were recorded, and the clinical symptoms of the mice were evaluated. The mRNA expression levels of IL-6, COX-2 and TNF-α and the protein expression of IκBα and P65 in the colon tissues were detected with RT- PCR and Western blotting, respectively. RESULTS The mRNA and protein expressions of WDSUB1 in the colon tissues were significantly lower in colitis mice with WDSUB1 knock-down than in the control mice. Compared with the control mice, the mice receiving siWDSUB1 injection showed obviously milder weight loss, diarrhea and hematochezia with significantly lower mRNA expressions of COX2, IL-6 and TNFα (P < 0.05) and protein expression of IκBα but without obvious changes in P65 expression in the colon tissue. CONCLUSION WDSUB1 knockdown can alleviate DSS- induced colitis in mice possibly by inhibiting the NF-κB signaling pathway and decreasing the expression of inflammatory factors in the colon tissues.
Collapse
|
11
|
CD38: An important regulator of T cell function. Biomed Pharmacother 2022; 153:113395. [PMID: 35834988 DOI: 10.1016/j.biopha.2022.113395] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is a multifunctional extracellular enzyme on the cell surface with NADase and cyclase activities. CD38 is not only expressed in human immune cells, such as lymphocytes and plasma cells, but also is abnormally expressed in a variety of tumor cells, which is closely related to the occurrence and development of tumors. T cells are one of the important immune cells in the body. As NAD consuming enzymes, CD38, ART2, SIRT1 and PARP1 are closely related to the number and function of T cells. CD38 may also influence the activity of ART2, SIRT1 and PARP1 through the CD38-NAD+ axis to indirectly affect the number and function of T cells. Thus, CD38-NAD+ axis has a profound effect on T cell activity. In this paper, we reviewed the role and mechanism of CD38+ CD4+ T cells / CD38+ CD8+ T cells in cellular immunity and the effects of the CD38-NAD+ axis on T cell activity. We also summarized the relationship between the CD38 expression level on T cell surface and disease prediction and prognosis, the effects of anti-CD38 monoclonal antibodies on T cell activity and function, and the role of anti-CD38 chimeric antigen receptor (CAR) T cell therapy in tumor immunity. This will provide an important theoretical basis for a comprehensive understanding of the relationship between CD38 and T cells.
Collapse
|
12
|
Quantitative Determination of 5-Aminoisoquinoline, a PARP-1 Inhibitor by UPLC-MS/MS: In Silico ADME Profile and In Vitro Metabolic Stability Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-Aminoisoquinoline (5-AIQ) is a water-soluble, potent and selective Poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor, widely used as a biochemical and pharmacological tool to study the inhibitory effect of PARPs enzyme. In this study, a simple, selective and reliable ultra-performance liquid chromatography-tandem mass spectrometry assay has been developed for the quantitative analysis of 5-AIQ in plasma using pantoprazole as an internal standard (IS). Both 5-AIQ and IS were separated on an Acquity CSH18 (2.1 × 100 mm; 1.7 µm) column after chromatographic elution of mobile phase comprising of 10 mM ammonium acetate and acetonitrile (35:65; v/v) at a flow rate of 0.3 mL/min. Electrospray ionization in positive mode was used for sample ionization and precursor to product ion transitions of 145.0 > 91.0; 145.0 > 117.4 for 5-AIQ and 384.0 > 138.1 for IS were used for detection and quantification in multiple reaction monitoring mode. The assay was linear in the concentration range of 1.0 to 666 ng/mL with correlation coefficient of ≥0.995. The precision and bias were within the acceptable limits of ≤12.68% and −8.6 to 5.9%, respectively, with mean recovery of 79.1% from plasma and negligible matrix effects (92.4%). In silico ADME prediction, 5-AIQ showed to be very soluble in water and high gastrointestinal absorption along with blood–brain barrier (BBB) permeability. The validated assay was successfully applied in a metabolic stability study, and 5-AIQ was moderately metabolized by human liver microsomes with an in vitro half-life of 14.5 min and intrinsic clearance of 47.6 µL/min/mg. The validated method can be utilized for future pharmacokinetic and bio-distribution studies.
Collapse
|
13
|
Olaparib: A Clinically Applied PARP Inhibitor Protects from Experimental Crohn's Disease and Maintains Barrier Integrity by Improving Bioenergetics through Rescuing Glycolysis in Colonic Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7308897. [PMID: 34567413 PMCID: PMC8457969 DOI: 10.1155/2021/7308897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
Crohn's disease (CD) is an inflammatory disorder of the intestines characterized by epithelial barrier dysfunction and mucosal damage. The activity of poly(ADP-ribose) polymerase-1 (PARP-1) is deeply involved in the pathomechanism of inflammation since it leads to energy depletion and mitochondrial failure in cells. Focusing on the epithelial barrier integrity and bioenergetics of epithelial cells, we investigated whether the clinically applied PARP inhibitor olaparib might improve experimental CD. We used the oral PARP inhibitor olaparib in the 2,4,6-trinitrobenzene sulfonic acid- (TNBS-) induced mouse colitis model. Inflammatory scoring, cytokine levels, colon histology, hematological analysis, and intestinal permeability were studied. Caco-2 monolayer culture was utilized as an epithelial barrier model, on which we used qPCR and light microscopy imaging, and measured impedance-based barrier integrity, FITC-dextran permeability, apoptosis, mitochondrial oxygen consumption rate, and extracellular acidification rate. Olaparib reduced the inflammation score, the concentration of IL-1β and IL-6, enhanced the level of IL-10, and decreased the intestinal permeability in TNBS-colitis. Blood cell ratios, such as lymphocyte to monocyte ratio, platelet to lymphocyte ratio, and neutrophil to lymphocyte ratio were improved. In H2O2-treated Caco-2 monolayer, olaparib decreased morphological changes, barrier permeability, and preserved barrier integrity. In oxidative stress, olaparib enhanced glycolysis (extracellular acidification rate), and it improved mitochondrial function (mitochondrial coupling efficiency, maximal respiration, and spare respiratory capacity) in epithelial cells. Olaparib, a PARP inhibitor used in human cancer therapy, improved experimental CD and protected intestinal barrier integrity by preventing its energetic collapse; therefore, it could be repurposed for the therapy of Crohn's disease.
Collapse
|
14
|
Xia T, Li J, Ren X, Liu C, Sun C. Research progress of phenolic compounds regulating IL-6 to exert antitumor effects. Phytother Res 2021; 35:6720-6734. [PMID: 34427003 DOI: 10.1002/ptr.7258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Cytokine therapy, which activates the host immune system, has become an important and novel therapeutic approach to treat various cancers. Recent studies have shown that IL-6 is an important cytokine that regulates the homeostasis in vivo. However, excessive IL-6 plays a pathological role in a variety of acute and chronic inflammatory diseases, especially in cancer. IL-6 can transmit signals through JAK/STAT, RAS /MAPK, PI3K/ Akt, NF-κB, and other pathways to promote cancer progression. Phenolic compounds can effectively regulate the level of IL-6 in tumor cells and improve the tumor microenvironment. This article focuses on the phenolic compounds through the regulation of IL-6, participate in the prevention of cancer, inhibit the proliferation of cancer cells, reduce angiogenesis, improve therapeutic efficacy, and reduce side effects and other aspects. This will help to further advance research on cytokine therapy to reduce the burden of cancer and improve patient prognosis. However, current studies are mostly limited to animal and cellular experiments, and high-quality clinical studies are needed to further determine their antitumor efficacy in humans.
Collapse
Affiliation(s)
- Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|