1
|
Chen X, Yang Z, Liao M, Zhao Q, Lu Y, Li Q, Liu S, Li S, Chen J, He Y. Ginkgo Flavone Aglycone Ameliorates Atherosclerosis via Inhibiting Endothelial Pyroptosis by Activating the Nrf2 Pathway. Phytother Res 2024. [PMID: 39322309 DOI: 10.1002/ptr.8321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
Natural antioxidants have been shown to be effective against atherosclerosis. Ginkgo flavone aglycone (GA) has strong antioxidant properties and can protect against endothelial damage. However, the mechanisms by which GA protects against atherosclerosis remain largely unexplored. This study hopes to find the anti-atherosclerotic mechanism of GA. ApoE-/- mice fed a high-fat diet were used for modeling atherosclerosis. The efficacy of GA on mice with atherosclerosis was evaluated based on the following indicators: Oil Red O staining, Masson staining, lipid content, and apoptosis. Transmission electron microscopy, Western blot, immunofluorescence staining, and propidium iodide staining were used to analyze the effects of GA on ox-LDL-treated human aortic endothelial cells. GA activated Nrf2 by promoting the nuclear translocation of Nrf2, thereby inhibiting endothelial pyroptosis. GA prevented endothelial pyroptosis suppressed oxidative stress, and inhibited the development of atherosclerosis in ApoE-/- mice fed high-fat diets. At the cellular level, GA suppressed ox-LDL-induced pyroptosis of HAECs by reducing reactive oxygen species (ROS) levels and inhibiting NLRP3 inflammasome. Furthermore, siRNA targeting Nrf2 or ML385, an Nrf2 inhibitor, reversed these effects. GA liberated Nrf2 from Keap1 sequestration, enhanced the nuclear translocation of Nrf2 and the transcription of downstream antioxidant proteins, reinforced the antioxidant defense system, and inhibited oxidative stress, thereby preventing endothelial cell pyroptosis, and attenuating the progression of atherosclerosis. This study indicated that GA mitigated endothelial pyroptosis by modulating Keap1/Nrf2 interactions, shedding light on the potential mechanisms underlying the protective effects of natural antioxidants against atherosclerosis.
Collapse
Affiliation(s)
- Xingyi Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhuan Yang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meijuan Liao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Qing Zhao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Qin Li
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shijing Liu
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shiliang Li
- Department of Vascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiyu Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yan He
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
3
|
Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The molecular mechanisms of ginkgo (Ginkgo biloba) activity in signaling pathways: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155352. [PMID: 38342017 DOI: 10.1016/j.phymed.2024.155352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND One of the most unique plants that have ever grown on the planet is Ginkgo biloba L., a member of the Ginkgoaceae family with no close living relatives. The existence of several differently structured components of G. biloba has increased the chemical variety of herbal therapy. Numerous studies that investigated the biochemical characteristics of G. biloba suggest this plant as a potential treatment for many illnesses. PURPOSE Review the molecular mechanisms involved in the signaling pathways of G. biloba activity in varied circumstances and its potential as a novel treatment for various illnesses. METHODS Studies focusing on the molecular processes and signaling pathways of compounds and extracts of G. biloba were found and summarized using the proper keywords and operators from Google Scholar, PubMed, Web of Science, and Scopus without time restrictions. RESULTS G. biloba exerts its effects through its anti-inflammatory, anti-apoptotic, anti-cancer, neuroprotective, cardioprotective, hepatoprotective, antiviral, antibacterial, pulmoprotective, renoprotective, anti-osteoporosis, anti-melanogenic, retinoprotective, otoprotective, adipogenic, and anti-adipogenic properties. The most important mechanisms involved in these actions are altering the elevation of ROS formation, inhibiting NADPH oxidases activation, altering the expression of antioxidant enzymes, downregulating MAPKs (p38 MAPK and ERK, and JNK) and AP-1, increasing cAMP, inactivating Stat5, activating the AMPK signaling pathway, affecting Stat3/JAK2, NF-κB, Nrf-2, mTOR, HGF/c-Met, Wnt/β-catenin and BMP signaling pathways, and changing the mitochondrial transmembrane potential, the Bax/Bcl-2 ratio, the release of Cyc from mitochondria to cytosol, the protein cleavage of caspases 3, 7, 8, 9, and 12, poly (ADP-ribose) polymerase, and MMPs levels. CONCLUSIONS G. biloba and its components have gained attention in recent years for their therapeutic benefits, such as their anti-inflammatory, antioxidant, anti-apoptotic, and apoptotic effects. By understanding their molecular mechanisms and signaling pathways, potential novel medicines might be developed in response to the rising public desire for new therapies.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wu J, Sun Z, Zhang D, Liu H, Wu J, Zhang S. Mechanism and ingredients prediction of Radix Salviae-Angelicae Sinensis Radix-Lycii Fructus-Rehmanniae Radix Praeparata-Ginkgo Folium for retinitis pigmentosa therapy using network pharmacology and molecular docking analysis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:382. [PMID: 37970593 PMCID: PMC10632577 DOI: 10.21037/atm-22-3557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/19/2023] [Indexed: 11/17/2023]
Abstract
Background Radix Salviae (Danshen)-Angelicae Sinensis Radix (Danggui)-Lycii Fructus (Gouqizi)-Rehmanniae Radix Praeparata (Shudihuang)-Ginkgo Folium (Yinxinye) (RALRG) are commonly used herbs in China that have shown positive effects on retinitis pigmentosa (RP). However, little research has been performed on the impact of RALRG and RP. Herein, this study aimed to predict the mechanism and potential components of RALRG in treating RP. Methods The ingredients of RALRG were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP); the potential targets of RP and RALRG were obtained from TCMSP, GeneCards, and the Online Mendelian Inheritance in Man (OMIM) database. A protein-protein interaction (PPI) network was constructed to visualize PPIs. The functional enrichment was performed with the R program. A visual RALRG-RP-pathway pharmacology network was established by Cytoscape 3.9.1. Molecular docking was used to perform molecular docking and calculate the binding affinity. Results A total of 132 effective active ingredients in RALRG with 248 target genes were screened; 92 intersection target genes were acquired from the intersection of RP- and RALRG-related genes. Gene Ontology (GO) enrichment indicated that these intersection targets were mainly involved in oxidative stress, metal ion response, and chemical stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the PI3K-AKT, cellular senescence, and MAPK signaling pathways were closely related to the therapy of RP. In addition, a potential pharmacology network for RALRG-RP-pathway was constructed. AKT1 and JUN were considered the primary targets. Luteolin, quercetin, and kaempferol were identified as the vital three active ingredients. Conclusions RALRG was found to be the main regulator for oxidative stress and PI3K/AKT signaling pathways. Luteolin, quercetin, and kaempferol were three promising complementary ingredients for RP treatment. This study may provide a theoretical basis for applying RALRG to screen potential drugs for RP.
Collapse
Affiliation(s)
- Jiawen Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Zhongmou Sun
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daowei Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Hongli Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
5
|
Li Y, Wang K, Zhu X, Cheng Z, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts protect human retinal Müller glial cells from t-BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis. J Pharm Pharmacol 2023; 75:385-396. [PMID: 36583518 DOI: 10.1093/jpp/rgac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Retinal Müller glial cell loss is almost involved in all retinal diseases, especially diabetic retinopathy (DR). Oxidative stress significantly contributes to the development of Müller glial cell loss. Ginkgo biloba extracts (GBE) have been reported to possess antioxidant property, beneficial in treating human retinal diseases. However, little is known about its role in Müller glial cells. This study investigated the protective effect of GBE (prepared from ginkgo biloba dropping pills) in human Müller glial cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress and its underlying molecular mechanism. METHODS MIO-M1 cells were pretreated with or without GBE prior to the exposure to t-BHP-induced oxidative stress. Cell viability, cell death profile and lipid peroxidation were subsequently assessed. Protein expression of the key anti-oxidative signalling factors were investigated. KEY FINDINGS We showed that GBE can effectively protect human MIO-M1 cells from t-BHP-induced oxidative injury by improving cell viability, reducing intracellular ROS accumulation and suppressing lipid peroxidation, which effect is likely mediated through activating AMPK-Nrf2-NQO-1 antioxidant respondent axis. CONCLUSIONS Our study is the first to reveal the great potentials of GBE in protecting human retinal Müller glial cell loss against oxidative stress. GBE might be used to prevent human retinal diseases particularly DR.
Collapse
Affiliation(s)
- Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| |
Collapse
|
6
|
Li Y, Zhu X, Wang K, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts (GBE) protect human RPE cells from t-BHP-induced oxidative stress and necrosis by activating the Nrf2-mediated antioxidant defence. J Pharm Pharmacol 2023; 75:105-116. [PMID: 36190376 DOI: 10.1093/jpp/rgac069] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Age-related macular degeneration (AMD) is a prevalent ocular disease. Dry AMD accounts for most cases of blindness associated with AMD but there are no treatments. Oxidative stress-induced damage to retinal pigment epithelial (RPE) cells is a major contributor to the pathogenesis of dry AMD. This study investigated the protective actions of Ginkgo biloba extracts (GBE) in human RPE cells subjected to tert-butyl hydroperoxide (t-BHP)-mediated oxidative stress. METHODS The human ARPE-19 cells were pre-treated with or without GBE before the exposure to t-BHP. Cell viability, cell death profile and lipid peroxidation were assessed. The findings were verified using human primary RPE cultures. KEY FINDINGS GBE pre-treatment prevented the increase in lipid peroxidation and necrosis/ferroptosis, and the concurrent viability decrease in RPE cells exposed to t-BHP. It enabled the pronounced activation of Nrf2 and its downstream genes. We found that ERK1/2 phosphorylation was increased to a similar extent by t-BHP and GBE. CONCLUSION This study revealed that GBE pre-treatment attenuates pro-oxidant stress and protects human RPE cells from oxidative injury by modulating ERK1/2-Nrf2 axis. These findings suggest that GBE has the potential to be developed as a agent that may be valuable in decreasing AMD progression.
Collapse
Affiliation(s)
- Yue Li
- Sydney Pharmacy School, Faculty of Medicine and Health NSW, The University of Sydney, Sydney, NSW, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health NSW, The University of Sydney, Sydney, NSW, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health NSW, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1689-1699. [DOI: 10.1093/jpp/rgac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
|