1
|
Liu L, Zhang Y, Tang XR, Jia GB, Zhou S, Yue GL, He CS. Effect of emodin on acute lung injury: a meta-analysis of preclinical trials. BMC Pulm Med 2024; 24:596. [PMID: 39623403 PMCID: PMC11613585 DOI: 10.1186/s12890-024-03406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Emodin has protective effects on acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). This meta-analysis intended to illustrate the efficacy of emodin on ALI/ARDS animal models. METHODS Relevant preclinical studies were searched on PubMed, EMBASE, and Web of Science. Standardized mean differences (SMDs) with corresponding confidence intervals (CIs) were used to compare lung injury scores, lung wet-to-dry weight ratios (W/D), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-18, PaO2, and PaCO2 between the treatment and control groups. The article quality was appraised using the SYRCLE tool. RESULTS Twenty one studies published between 2014 and 2023 were enrolled. Compared with the control group, emodin significantly reduced lung injury scores (SMD: -3.63; 95% CI: -4.36, -2.90; p < 0.00001), W/D ratios (SMD: -3.23; 95% CI: -4.29, -2.16; p < 0.00001), and MPO levels (SMD: -2.96; 95% CI: -3.92, -1.99; p < 0.00001). Furthermore, emodin downregulated TNF-α (SMD: -3.04; 95% CI: -3.62, -2.47; p < 0.00001), IL-1β (SMD: -3.76; 95% CI: -4.65, -2.87; p < 0.00001), IL-6 (SMD: -3.19; 95% CI: -3.95, -2.43; p < 0.00001), and IL-18 levels (SMD: -4.83; 95% CI: -6.10, -3.57; p < 0.00001). Emodin improved gas exchange dysfunction, increased PaO2 (SMD: 3.76; 95% CI: 2.41, 5.11; p < 0.00001), and decreased PaCO2 (SMD: -3.83; 95% CI: -4.90, -2.76; p < 0.00001). Sensitivity analyses and stratified analyses were conducted for outcome measures with heterogeneity. CONCLUSIONS Emodin treatment can effectively reduce the severity of ALI in animal models. Additional animal investigations and clinical trials involving human subjects are imperative.
Collapse
Affiliation(s)
- Lei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China
- Department of Respiratory and Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Jiangbei Chongqing, 400000, China
| | - Yu Zhang
- Department of Respiratory Medicine, Traditional Chinese Medicine Hospital of Renshou County, Meishan Sichuan, 620500, China
| | - Xiao-Ren Tang
- Department of Traditional Chinese Medicine, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Bishan Chongqing, 404000, China
| | - Guo-Bing Jia
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China
| | - Shan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China
| | - Guo-Long Yue
- Department of Respiratory and Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Jiangbei Chongqing, 400000, China
| | - Cheng-Shi He
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 610000, China.
| |
Collapse
|
2
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Jiang W, Li X, Zhang Y, Zhou W. Natural Compounds for the Treatment of Acute Pancreatitis: Novel Anti-Inflammatory Therapies. Biomolecules 2024; 14:1101. [PMID: 39334867 PMCID: PMC11430608 DOI: 10.3390/biom14091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Acute pancreatitis remains a serious public health problem, and the burden of acute pancreatitis is increasing. With significant morbidity and serious complications, appropriate and effective therapies are critical. Great progress has been made in understanding the pathophysiology of acute pancreatitis over the past two decades. However, specific drugs targeting key molecules and pathways involved in acute pancreatitis still require further study. Natural compounds extracted from plants have a variety of biological activities and can inhibit inflammation and oxidative stress in acute pancreatitis by blocking several signaling pathways, such as the nuclear factor kappa-B and mitogen-activated protein kinase pathways. In this article, we review the therapeutic effects of various types of phytochemicals on acute pancreatitis and discuss the mechanism of action of these natural compounds in acute pancreatitis, aiming to provide clearer insights into the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Wenkai Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Yi Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China;
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| |
Collapse
|
4
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
5
|
Gatlik E, Mehes B, Voltz E, Sommer U, Tritto E, Lestini G, Liu X, Pal P, Velinova M, Denney WS, Fu Y, Opipari A, Dean D, Junge G. First-in-human safety, tolerability, and pharmacokinetic results of DFV890, an oral low-molecular-weight NLRP3 inhibitor. Clin Transl Sci 2024; 17:e13789. [PMID: 38761014 PMCID: PMC11101992 DOI: 10.1111/cts.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 05/20/2024] Open
Abstract
This first-in-human study evaluated the safety, tolerability, single- and multiple-dose pharmacokinetic profiles with dietary influence, and pharmacodynamics (PD) of DFV890, an oral NLRP3 inhibitor, in healthy participants. In total, 122 participants were enrolled into a three-part trial including single and 2-week multiple ascending oral doses (SAD and MAD, respectively) of DFV890, and were randomized (3:1) to DFV890 or placebo (SAD [3-600 mg] and MAD [fasted: 10-200 mg, once-daily or fed: 25 and 50 mg, twice-daily]). DFV890 was generally well-tolerated. Neither deaths nor serious adverse events were reported. A less than dose-proportional increase in exposure was observed with the initially used crystalline suspension (3-300 mg); however, an adjusted suspension formulation using spray-dried dispersion (SDD; 100-600 mg) confirmed dose-proportional increase in exposure. Relative bioavailability between crystalline suspension and tablets, and food effect were evaluated at 100 mg. Under fasting conditions, Cmax of the tablet yielded 78% compared with the crystalline suspension, and both formulations showed comparable AUC. The fed condition led to a 2.05- and 1.49-fold increase in Cmax and AUC0-last compared with the fasting condition. The median IC50 and IC90 for ex-vivo lipopolysaccharide-stimulated interleukin IL-1β release inhibition (PD) were 61 (90% CI: 50, 70) and 1340 ng/mL (90% CI: 1190, 1490). Crystalline tablets of 100 mg once-daily or 25 mg twice-daily were sufficient to maintain ~90% of the IL-1β release inhibition over 24 h at steady state. Data support dose and formulation selection for further development in diseases, in which an overactivated NLRP3 represents the underlying pathophysiology.
Collapse
Affiliation(s)
- Ewa Gatlik
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Beata Mehes
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Emilie Voltz
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ulrike Sommer
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Elaine Tritto
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Xiaoxi Liu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Parasar Pal
- Novartis Healthcare Pvt. Ltd, Hyderabad, India
| | | | | | - Yunlin Fu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Dennis Dean
- IFM Therapeutics, Boston, Massachusetts, USA
| | - Guido Junge
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
6
|
Yu H, Lv M, Zhang S, Zou K, Qian Y, Lv S. Combination therapy with budesonide and acetylcysteine alleviates LPS-induced acute lung injury via the miR-381/NLRP3 molecular axis. PLoS One 2023; 18:e0289818. [PMID: 37556466 PMCID: PMC10411794 DOI: 10.1371/journal.pone.0289818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) usually has a high morbidity and mortality rate, but the current treatment is relatively scarce. Both budesonide (Bud) and N-acetylcysteine (NAC) exhibit protective effects in ALI, so we further investigated whether they have a synergistic effect on ALI when used together. METHODS Establishment of a rat model of ALI with Lipopolysaccharide (LPS). Bud and NAC were administered by nebulized inhalation alone or in combination. Subsequently, HE staining was performed to observe the pathological changes in lungs of rat. Evans blue staining was implemented to assess alveolar permeability, and the pulmonary edema was assessed by measuring the ratio of wet to dry weight of the lung. Moreover, a TUNEL kit was served to test apoptosis in lung tissues. Western blot and immunohistochemistry were analyzed for expression of scorch-related proteins and NLRP3 in lung tissue, respectively. ELISA was implemented to detect inflammatory factor levels in BALF. and RT-qPCR was utilized to assess the expression level of miR-381. After stable transfection of miR-381 inhibitor or OE-NLRP3 in BEAS-2B treated with LPS, Bud and NAC, miR-381 expression was assessed by RT-qPCR, scorch death-related protein expression was measured by western blot, cell proliferation/viability was assayed by CCK-8, apoptosis was measured by flow cytometry, and ELISA was implemented to assess inflammatory factor levels. Furthermore, the Dual-luciferase assay was used to verify the targeting relationship. RESULTS Bud and NAC treatment alone or in combination with nebulized inhalation attenuated the increased alveolar permeability, pulmonary edema, inflammatory response and scorching in LPS-induced ALI rats, and combined treatment with Bud and NAC was the most effective. In addition, combined treatment with Bud and NAC upregulated miR-381 expression and inhibited NLRP3 expression in cellular models and LPS-induced ALI rats. Transfection of the miR-381 inhibitor and OE-NLRP3 partially reversed the protective effects of Bud and NAC combination treatment on BEAS-2B cell proliferation inhibition, apoptosis, focal death and the inflammatory response. CONCLUSION Combined Bud and NAC nebulization therapy alleviates LPS-induced ALI by modulating the miR-381/NLRP3 molecular axis.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Meifen Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Shiying Zhang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Kaiwen Zou
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Yan Qian
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Shaokun Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| |
Collapse
|
7
|
Zhang WJ, Li KY, Lan Y, Zeng HY, Chen SQ, Wang H. NLRP3 Inflammasome: A key contributor to the inflammation formation. Food Chem Toxicol 2023; 174:113683. [PMID: 36809826 DOI: 10.1016/j.fct.2023.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Inflammation is an important part of the development of various organ diseases. The inflammasome, as an innate immune receptor, plays an important role in the formation of inflammation. Among various inflammasomes, the NLRP3 inflammasome is the most well studied. The NLRP3 inflammasome is composed of skeletal protein NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1. There are three types of activation pathways: (1) "classical" activation pathway; (2) "non-canonical" activation pathway; (3) "alternative" activation pathway. The activation of NLRP3 inflammasome is involved in many inflammatory diseases. A variety of factors (such as genetic factors, environmental factors, chemical factors, viral infection, etc.) have been proved to activate NLRP3 inflammasome and promote the inflammatory response of the lung, heart, liver, kidney and other organs in the body. Especially, the mechanism of NLRP3 inflammation and its related molecules in its associated diseases remains not to be summarized, namely they may promote or delay inflammatory diseases in different cells and tissues. This article reviews the structure and function of the NLRP3 inflammasome and its role in various inflammations, including inflammations caused by chemically toxic substances.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Ke-Yun Li
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Yi Lan
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Han-Yi Zeng
- Department of Genetics, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Shui-Qin Chen
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, PR China.
| |
Collapse
|
8
|
Xiao X, Wu X, Fu Q, Ren X, Pang X, Li Y, Zhang Q, Chen Y. Efficacy and safety of Dachaihu Decoction for acute pancreatitis: Protocol for a systematic review and meta-analysis. PLoS One 2023; 18:e0285661. [PMID: 37200279 DOI: 10.1371/journal.pone.0285661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Dachaihu Decoction (DCD) is a traditional herbal formula widely used for treating acute pancreatitis (AP) in China. However, the efficacy and safety of DCD has never been validated, limiting its application. This study will assess the efficacy and safety of DCD for AP treatment. METHODS Relevant randomized controlled trials of DCD in treating AP will be searched through Cochrane Library, PubMed, Embase, Web of Science, Scopus, CINAHL, China National Knowledge Infrastructure database, Wanfang Database, VIP Database, and Chinese Biological Medicine Literature Service System database. Only studies published between the inception of the databases and May 31, 2023 shall be considered. Searches will also be performed in the WHO International Clinical Trials Registry Platform, Chinese Clinical Trial Registry, and ClinicalTrials.gov. Preprint databases and grey literature sources such as OpenGrey, British Library Inside, ProQuest Dissertations & Theses Global, and BIOSIS preview will also be searched for relevant resources. The primary outcomes to be assessed will include mortality rate, rate of surgical intervention, proportion of patients with severe acute pancreatitis transferred to ICU, gastrointestinal symptoms, and the acute physiology and chronic health evaluation II score. Secondary outcomes will include systemic complications, local complications, the normalization period of C-reactive protein, length of stay in the hospital, TNF-α, IL-1, IL-6, IL-8, and IL-10 levels, and adverse events. Study selection, data extraction, and assessment of bias risk will be conducted independently by two reviewers using the Endnote X9 and Microsoft Office Excel 2016 software. The risk of bias of included studies will be assessed by the Cochrane "risk of bias" tool. Data analysis will be performed using the RevMan software (V.5.3). Subgroup and sensitivity analysis will be performed where necessary. RESULTS This study will provide high-quality current evidence of DCD for treating AP. CONCLUSION This systematic review will provide evidence of whether DCD is an effective and safe therapy for treating AP. TRIAL REGISTRATION PROSPERO registration number CRD42021245735. The protocol for this study was registered at PROSPERO, and is available in the S1 Appendix. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021245735.
Collapse
Affiliation(s)
- Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinwei Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuelei Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiao Pang
- Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanyuan Li
- Southwest Medical University, Luzhou, Sichuan, China
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunhui Chen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Natural Chinese herbs for the prevention and treatment of acute pancreatitis: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Chen D, Li Q, Zhang H, Kou F, Li Q, Lyu C, Wei H. Traditional Chinese medicine for hypertrophic scars—A review of the therapeutic methods and potential effects. Front Pharmacol 2022; 13:1025602. [PMID: 36299876 PMCID: PMC9589297 DOI: 10.3389/fphar.2022.1025602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic scar (HS) is a typical pathological response during skin injury, which can lead to pain, itching, and contracture in patients and even affect their physical and mental health. The complexity of the wound healing process leads to the formation of HS affected by many factors. Several treatments are available for HS, whereas some have more adverse reactions and can even cause new injuries with exacerbated scarring. Traditional Chinese Medicine (TCM) has a rich source, and most botanical drugs have few side effects, providing new ideas and methods for treating HS. This paper reviews the formation process of HS, the therapeutic strategy for HS, the research progress of TCM with its relevant mechanisms in the treatment of HS, and the related new drug delivery system of TCM, aiming to provide ideas for further research of botanical compounds in the treatment of HS, to promote the discovery of more efficient botanical candidates for the clinical treatment of HS, to accelerate the development of the new drug delivery system and the final clinical application, and at the same time, to promote the research on the anti-HS mechanism of multiherbal preparations (Fufang), to continuously improve the quality control and safety and effectiveness of anti-HS botanical drugs in clinical application.
Collapse
Affiliation(s)
- Daqin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huimin Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Qinghai Province Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Chunming Lyu, ; Hai Wei,
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chunming Lyu, ; Hai Wei,
| |
Collapse
|
11
|
Zhang C, Wang H, Wang H, Shi S, Zhao P, Su Y, Wang H, Yang M, Fang M. A microsatellite DNA-derived oligodeoxynucleotide attenuates lipopolysaccharide-induced acute lung injury in mice by inhibiting the HMGB1-TLR4-NF-κB signaling pathway. Front Microbiol 2022; 13:964112. [PMID: 35992691 PMCID: PMC9386506 DOI: 10.3389/fmicb.2022.964112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
Acute lung injury (ALI) with uncontrolled inflammatory response has high morbidity and mortality rates in critically ill patients. Pathogen-associated molecular patterns (PAMPs) are involved in the development of uncontrolled inflammatory response injury and associated lethality. In this study, we investigated the inhibit effect of MS19, a microsatellite DNA-derived oligodeoxynucleotide (ODN) with AAAG repeats, on the inflammatory response induced by various PAMPs in vitro and in vivo. In parallel, a microsatellite DNA with AAAC repeats, named as MS19-C, was used as controls. We found that MS19 extensively inhibited the expression of inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α induced by various PAMPs stimulation, including DNA viruses, RNA viruses, bacterial components lipopolysaccharide (LPS), and curdlan, as well as the dsDNA and dsRNA mimics, in primed bone marrow-derived macrophage (BMDM). Other than various PAMPs, MS19 also demonstrated obvious effects on blocking the high mobility group box1 (HMGB1), a representative damage-associated-molecular pattern (DAMP), nuclear translocation and secretion. With the base substitution from G to C, MS19-C has been proved that it has lost the inhibitory effect. The inhibition is associated with nuclear factor kappa B (NF-κB) signaling but not the mitogen-activated protein kinase (MAPK) transduction. Moreover, MS19 capable of inhibiting the IL-6 and TNF-α production and blocking the HMGB1 nuclear translocation and secretion in LPS-stimulated cells was used to treat mice ALI induced by LPS in vivo. In the ALI mice model, MS19 significantly inhibited the weight loss and displayed the dramatic effect on lessening the ALI by reducing consolidation, hemorrhage, intra-alveolar edema in lungs of the mice. Meanwhile, MS19 could increase the survival rate of ALI by downregulating the inflammation cytokines HMGB1, TNF-a, and IL-6 production in the bronchoalveolar lavage fluid (BALF). The data suggest that MS19 might display its therapeutic role on ALI by inhibiting the HMGB1-TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenghua Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Endoscopy, Jilin Provincial Cancer Hospital, Changchun, China
| | - Hui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peiyan Zhao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hua Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Ming Yang,
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Mingli Fang,
| |
Collapse
|
12
|
Wu X, Yao J, Hu Q, Kang H, Miao Y, Zhu L, Li C, Zhao X, Li J, Wan M, Tang W. Emodin Ameliorates Acute Pancreatitis-Associated Lung Injury Through Inhibiting the Alveolar Macrophages Pyroptosis. Front Pharmacol 2022; 13:873053. [PMID: 35721108 PMCID: PMC9201345 DOI: 10.3389/fphar.2022.873053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate the protective effect of emodin in acute pancreatitis (AP)-associated lung injury and the underlying mechanisms. Methods: NaT-AP model in rats was constructed using 3.5% sodium taurocholate, and CER+LPS-AP model in mice was constructed using caerulein combined with Lipopolysaccharide. Animals were divided randomly into four groups: sham, AP, Ac-YVAD-CMK (caspase-1 specific inhibitor, AYC), and emodin groups. AP-associated lung injury was assessed with H&E staining, inflammatory cytokine levels, and myeloperoxidase activity. Alveolar macrophages (AMs) pyroptosis was evaluated by flow cytometry. In bronchoalveolar lavage fluid, the levels of lactate dehydrogenase and inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Pyroptosis-related protein expressions were detected by Western Blot. Results: Emodin, similar to the positive control AYC, significantly alleviated pancreas and lung damage in rats and mice. Additionally, emodin mitigated the pyroptotic process of AMs by decreasing the level of inflammatory cytokines and lactate dehydrogenase. More importantly, the protein expressions of NLRP3, ASC, Caspase1 p10, GSDMD, and GSDMD-NT in AMs were significantly downregulated after emodin intervention. Conclusion: Emodin has a therapeutic effect on AP-associated lung injury, which may result from the inhibition of NLRP3/Caspase1/GSDMD-mediated AMs pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Xiajia Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Kang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Miao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Xuan TQ, Gong G, Du H, Liu C, Wu Y, Bao G, Ma Q, Zhen D. Protective effect of pteryxin on LPS-induced acute lung injury via modulating MAPK/NF-κB pathway and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114924. [PMID: 34942323 DOI: 10.1016/j.jep.2021.114924] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peucedanum praeruptorum seed root is a common medicinal herb with antipyretic, expectorant, antitussive, and therapeutic effects against bronchitis and furuncle. The roots of this herb contain many coumarin compounds, including pteryxin. AIM OF THIS STUDY To investigate whether pteryxin can alleviate the LPS-induced lung injury and the mechanism involved. MATERIAL AND METHODS Male BALB/C mice were orally given sodium carboxymethylcellulose (CMC-Na) (0.5%, 1mL/100g) and pteryxin (suspended in CMC-Na; 0.5%) at 5, 10, 25 mg/kg once daily for 7 days. Subsequently, the mice received a single intratracheal instillation of 5 mg/kg LPS or saline as the control. After 8 hours, the mice were sacrificed to collect bronchoalveolar lavage fluid (BALF) and lung tissues. These samples were used to determine the lung W/D (wet/dry) weight ratio, total protein (TP) levels, inflammatory cytokines (IL-6, TNF-α, and IL-1β) and expression of protein involved in MAPK/NF-κB pathway and NLRP3 inflammasome. H&E staining was carried out on tissue sections to explore the pathological alterations induced by LPS. The protein expression of F4/80 and NLRP3 in lung tissues was analyzed using immunohistochemical staining. The binding of pteryxin to target proteins (MAPK, NF-κB and NLRP3) was determined based on molecular docking tests. RESULTS Treatment with pteryxin reduced the lung W/D weight ratio, total protein (TP) level and levels of inflammatory cytokines (TNFα, IL-6 and IL-1 β) significantly. Therefore, it ameliorated LPS-induced inflammatory response in BALB/C mice. Moreover, pteryxin suppressed LPS-induced upregulation of proteins involved in MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation. The expression level of F4/80 and NLRP3 was also downregulated by pteryxin pretreatment in lung tissues. Docking analysis revealed that pteryxin bound to target proteins (MAPK, NF- κB and NLRP3) with a fit-well pattern . CONCLUSION Pteryxin may attenuate LPS-induced acute lung injury by dampening MAPK/NF-κB signaling and NLRP 3 inflammasome activation.
Collapse
Affiliation(s)
- Tian-Qi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Guohua Gong
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Huanhuan Du
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chunyan Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yun Wu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Guilan Bao
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
14
|
Emodin Alleviates High-Glucose-Induced Pancreatic β-Cell Pyroptosis by Inhibiting NLRP3/GSDMD Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5276832. [PMID: 35265148 PMCID: PMC8898799 DOI: 10.1155/2022/5276832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a chronic noninfectious disease that is mainly featured by pancreatic β-cell (β-cell) dysfunction and impaired glucose homeostasis. Currently, the pathogenesis of dysfunction of the β-cells in DM remains unclear, and therapeutic approaches to it are limited. Emodin (EMD), a natural anthraquinone derivative, has been preliminarily proven to show antidiabetic effects. However, the underlying mechanism of EMD on β-cells still needs to be elucidated. In this study, we investigated the protective effects of EMD on the high glucose (50 mM)-induced INS-1 cell line and the underlying mechanism. INS-1 cells were treated with EMD (5, 10, and 20 μM) when exposed to high glucose. The effects of EMD were examined by using the inverted phase-contrast microscope, qRT-PCR, ELISA, and western blot. The results showed that EMD could alleviate cellular morphological changes, suppress IL-1β and LDH release, and promote insulin secretion in high-glucose-induced INS-1 cells. Furthermore, EMD inhibits NOD-like receptor protein 3 (NLRP3) activation and gasdermin D (GSDMD) cleavage to alleviate pyroptosis induced by high glucose. Overexpression of NLRP3 reversed the above changes caused by EMD. Collectively, our findings suggest that EMD attenuates high-glucose-induced β-cell pyroptosis by inhibiting NLRP3/GSDMD signaling.
Collapse
|