1
|
Chen A, Wang G, Wang D, Liu R. HPRT1: a preliminary investigation on its involvement in nasopharyngeal carcinoma. Discov Oncol 2024; 15:624. [PMID: 39505752 PMCID: PMC11541972 DOI: 10.1007/s12672-024-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Accumulating evidences have stressed the association between hypoxanthine phosphoribosyl transferase 1 (HPRT1) overexpression and the poor prognosis of various cancers. Our study, herein, preliminarily investigates the involvement of HPRT1 in nasopharyngeal carcinoma (NPC). METHODS Data from TCGA were applied to read HPRT1 expression in diverse cancers including NPC and to predict the prognosis of NPC patients. The total RNA and protein from NPC cells and nasopharyngeal epithelial cells NP460 were extracted to quantify HPRT1 expression. Following the completion of transfection, the proliferation and migration of NPC cells were determined employing MTT, colony formation and western blot assay (the quantification on expressions of protein related to proliferation and migration). RESULTS HPRT1 was differentially expressed in diverse cancers yet particularly highly expressed in NPC, and high HPRT1 expression was related to the poor prognosis of NPC patients. Also, HPRT1 expression was higher in NPC cells and its silencing diminished the viability and proliferation of NPC cells and reduced the expressions of CyclinD1, CyclinE, Multidrug Resistance Protein 1 (MDR1), matrix metalloproteinase (MMP)-2, and MMP-9. CONCLUSION This study preliminarily explored the involvement of HPRT1 in NPC based on some cellular assays in vitro, which may provide evidence for investigating the specific mechanism underlying the effects of HPRT1 in cancers.
Collapse
Affiliation(s)
- An Chen
- Otolaryngology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China
| | - Guifang Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China
| | - Deli Wang
- Otolaryngology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China
| | - Ruyang Liu
- Otolaryngology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China.
| |
Collapse
|
2
|
Wu YT, Lin CH, Chiu WC, Hsieh TJ, Chang SJ, Chang YC, Lan YY. Treatment with autophagic inhibitors enhances oligonol‑induced apoptotic effects in nasopharyngeal carcinoma cells. Biomed Rep 2024; 21:143. [PMID: 39161943 PMCID: PMC11332131 DOI: 10.3892/br.2024.1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Although the combination of chemotherapy and radiotherapy has increased the survival rate of patients with nasopharyngeal carcinoma (NPC), certain patients do not respond well to the treatment and have a poor prognosis. Therefore, novel therapeutic drugs and strategies to improve prognosis of patients with NPC are required. As certain plant extracts can suppress the viability of cancer cells, the present study investigated whether oligonol, a polyphenolic compound primarily found in lychee fruit, exerts anticancer activities in NPC cells. MTT, ELISA and immunoblotting were performed to investigate cell survival, cytokeratin-18 fragment release, and the expression of apoptosis and autophagy markers, respectively. Oligonol decreased the viability of NPC-TW01 and NPC/HK1NPC cell lines. Oligonol increased the protein expression of several apoptosis markers, including cleaved caspase-8 and -3, cleaved PARP and cytokeratin 18 fragment. Moreover, it also increased expression of autophagy markers Beclin 1 and LC3-II, as well as LC3-II/LC3-I ratio in both NPC cell lines. Furthermore, treatment with autophagy inhibitors 3-methyladenine or LY294002 significantly increased oligonol-induced viability inhibition in NPC-TW01 cells. Combined treatment of oligonol + LY294002 reduced LC3-II expression and the LC3II/LC3I ratio while increasing cleaved caspase-8 and -3, cleaved PARP and cytokeratin 18 fragment expression in NPC-TW01 cells. These findings indicated autophagy inhibitors could enhance viability inhibition and apoptotic effects induced by oligonol in NPC cells.
Collapse
Affiliation(s)
- Yen-Ting Wu
- Department of Pathology, Golden Hospital, Pingtung 90049, Taiwan, R.O.C
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Cheng-Han Lin
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Wen-Chin Chiu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Tsung-Jen Hsieh
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yun-Ching Chang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Yu-Yan Lan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| |
Collapse
|
3
|
Liu Y, Li N, Guo Y, Zhou Q, Yang Y, Lu J, Tian Z, Zhou J, Yan S, Li X, Shi L, Jiang S, Ge J, Feng R, Huang D, Zeng Z, Fan S, Xiong W, Li G, Zhang W. APLNR inhibited nasopharyngeal carcinoma growth and immune escape by downregulating PD-L1. Int Immunopharmacol 2024; 137:112523. [PMID: 38909500 DOI: 10.1016/j.intimp.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND APLNR is a G protein-coupled receptor and our previous study had revealed that APLNR could inhibit nasopharyngeal carcinoma (NPC) growth and metastasis. However, the role of APLNR in regulating PD-L1 expression and immune escape in NPC is unknown. METHODS We analyzed the expression and correlation of APLNR and PD-L1 in NPC tissues and cells. We investigated the effect of APLNR on PD-L1 expression and the underlying mechanism in vitro and in vivo. We also evaluated the therapeutic potential of targeting APLNR in combination with PD-L1 antibody in a nude mouse xenograft model. RESULTS We found that APLNR was negatively correlated with PD-L1 in NPC tissues and cells. APLNR could inhibit PD-L1 expression by binding to the FERM domain of JAK1 and blocking the interaction between JAK1 and IFNGR1, thus suppressing IFN-γ-mediated activation of the JAK1/STAT1 pathway. APLNR could also inhibit NPC immune escape by enhancing IFN-γ secretion and CD8+ T-cell infiltration and reducing CD8+ T-cell apoptosis and dysfunction. Moreover, the best effect was achieved in inhibiting NPC growth in nude mice when APLNR combined with PD-L1 antibody. CONCLUSIONS Our study revealed a novel mechanism of APLNR regulating PD-L1 expression and immune escape in NPC and suggested that APLNR maybe a potential therapeutic target for NPC immunotherapy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nan Li
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yilin Guo
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuqin Yang
- Shenzhen Maternity &Child Healthcare Hospital Clinical Laboratory, Shenzhen, Guangdong, China
| | - Jiaxue Lu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiqi Yan
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Su Jiang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ranran Feng
- Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Donghai Huang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Li Q, Guan W, Zhang J, Chen M, Zou Y. Anti-Infection of Nasopharyngeal Carcinoma Combined with Non-Tuberculous Mycobacteria: A Case Report and Literature Review. Infect Drug Resist 2024; 17:3527-3535. [PMID: 39161469 PMCID: PMC11330855 DOI: 10.2147/idr.s475377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Background Patients with nasopharyngeal carcinoma (NPC) combined with non-tuberculous Mycobacteria-pulmonary disease (NTM-PD) are very rare in the clinic, and our case is the first patient with NPC combined with NTM-PD. For oncologists, rapid control of the symptoms of infection is essential to the treatment of the primary disease. Case Presentation A 58-year-old man who developed a NTM-PD after chemotherapy for nasopharyngeal carcinoma. Granulocytosis after chemotherapy is a major factor in the development of various infectious diseases. Nasopharyngeal tumor was found on MRI of the patient's head, and nasopharyngeal malignant tumor was considered after pathological examination after endoscopic resection of intranasal lesion, and then nasopharyngeal non-keratonic carcinoma (T4N1M0, stage IV) was confirmed in the department of oncology. The patient developed bone marrow suppression after chemotherapy and was admitted to hospital due to septic shock. Chest CT examination indicated pulmonary infection, and empirical antibiotic treatment was not effective. The NGS results showed that the patient was infected with Mycobacterium abscess. We treated with cefoxitin followed by moxifloxacin to reduce the lung lesions significantly. Conclusion NPC with NTM-PD is very rare, and the treatment of NTM-PD is very important for the prognosis of the patient's primary disease. Our study provides experience for anti-infection treatment of patients with immunosuppression.
Collapse
Affiliation(s)
- Qinchuan Li
- Department of Clinical Pharmacology, Chengdu Second People’s Hospital, Chengdu, 610021, People’s Republic of China
| | - Wenju Guan
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, 610021, People’s Republic of China
| | - Jian Zhang
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, 610021, People’s Republic of China
| | - Min Chen
- Sichuan Academy of Medical Sciences. Department of Pharmacy, Sichuan Provincial People’s Hospital, Chengdu, 610072, People’s Republic of China
| | - Ya Zou
- Department of Clinical Pharmacology, Chengdu Second People’s Hospital, Chengdu, 610021, People’s Republic of China
| |
Collapse
|
5
|
Noveir SD, Tarabay J, Davis JC, Nguyen MO. Lymphoepithelioma-like carcinoma of the skin treated by Mohs micrographic surgery. JAAD Case Rep 2024; 49:110-112. [PMID: 38952856 PMCID: PMC11214988 DOI: 10.1016/j.jdcr.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Affiliation(s)
- Sasan D. Noveir
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Jana Tarabay
- Division of Dermatopathology, Department of Pathology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Jeremy C. Davis
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Michael O. Nguyen
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
6
|
Xia C, Zhao J, Huang Y, Miao H, Zhao F. Angiogenesis in nasopharyngeal carcinoma: insights, imaging, and therapeutic strategies. Front Oncol 2024; 14:1331064. [PMID: 38863627 PMCID: PMC11165036 DOI: 10.3389/fonc.2024.1331064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly prevalent head and neck malignancy in southern China frequently diagnosed at advanced stages owing to subtle early symptoms and associated metastasis. Angiogenesis emerges as a pivotal factor in NPC progression, with numerous angiogenesis-related factors showing aberrant expression and contributing to increased neovascularization within NPC tumors. These abnormal vessels not only nourish tumor growth but also facilitate metastasis, culminating in unfavorable patient outcomes. Multiple studies have demonstrated the applicability of various imaging techniques for assessing angiogenesis in NPC tumors, thus serving as a foundation for personalized treatment strategies and prognostic assessments. Anti-angiogenic therapies have exhibited significant potential for inhibiting NPC angiogenesis and exerting anti-tumor effects. To enhance efficacy, anti-angiogenic drugs are frequently combined with other treatment modalities to synergistically enhance anti-tumor effects while mitigating the side effects associated with single-agent therapies, consequently improving patient prognosis. Identifying the potential mechanisms and key targets underlying NPC angiogenesis and exploring more effective detection and treatment approaches holds promise for shaping the future of NPC diagnosis, treatment, and prognosis, thereby offering new avenues and perspectives for research and clinical practice.
Collapse
Affiliation(s)
- Chenxi Xia
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Zhao
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Huang
- Department of Otolaryngology-Head and Neck Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Hongbin Miao
- Department of Otolaryngology-Head and Neck Surgery, Bishan hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Bishan, Chongqing, China
| | - Feipeng Zhao
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Otolaryngology-Head and Neck Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Zhu S, Li R, Yin K, Wu L. CPNE1, A Potential Therapeutic Target in Nasopharyngeal Carcinoma, Affects Cell Growth and Radiation Resistance. Radiat Res 2024; 201:310-316. [PMID: 38355101 DOI: 10.1667/rade-23-00220.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The increased expression of Copine 1 (CPNE1) has been observed in various cancers, which promotes cell proliferation, apoptosis, and radio resistance. However, the potential mechanism of CPNE1 in nasopharyngeal carcinoma (NPC) remains elusive. Consequently, our objective was to investigate the role of CPNE1 in regulating proliferation and radio resistance of NPC. CPNE1 expression in NPC and normal patients were obtained from Cancer Genome Atlas (TCGA) database. An elevated CPNE1 was observed in NPC patients and cells (C666-1, SUNE-1, and HNE-1). Then, C666-1 and SUNE-1 cells were subjected to si-CPNE1 under different radiations (0-8 Gy). Cell growth and proliferation were measured by CCK8 and EDU assays, which demonstrated si-CPNE1 suppressed proliferation. Colony formation was performed to detect cell viability under different radiation therapy and survival curve of cell was plotted, which indicated that CPNE1 knockdown improved cell radiosensitivity. Additionally, flow cytometry showed silence of CPNE1 enhanced apoptosis rate in radiated cells. To further investigate the mechanisms of CPNE1 regulating NPC, the expression of activated phosphate Akt (p-Akt) was assessed through western blotting. We observed elevated p-Akt in si-CPNE1 transfected C666-1 and SUNE-1 cells. In conclusion, these results demonstrated that CPNE1 expression is elevated in nasopharyngeal carcinoma cells, and its silencing could attenuate nasopharyngeal carcinoma advancement and improve radiosensitivity to radiation therapy by controlling Akt activation.
Collapse
Affiliation(s)
- Shujuan Zhu
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Rui Li
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Kun Yin
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Liming Wu
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| |
Collapse
|
9
|
Liu H, Tang L, Li Y, Xie W, Zhang L, Tang H, Xiao T, Yang H, Gu W, Wang H, Chen P. Nasopharyngeal carcinoma: current views on the tumor microenvironment's impact on drug resistance and clinical outcomes. Mol Cancer 2024; 23:20. [PMID: 38254110 PMCID: PMC10802008 DOI: 10.1186/s12943-023-01928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence of nasopharyngeal carcinoma (NPC) exhibits significant variations across different ethnic groups and geographical regions, with Southeast Asia and North Africa being endemic areas. Of note, Epstein-Barr virus (EBV) infection is closely associated with almost all of the undifferentiated NPC cases. Over the past three decades, radiation therapy and chemotherapy have formed the cornerstone of NPC treatment. However, recent advancements in immunotherapy have introduced a range of promising approaches for managing NPC. In light of these developments, it has become evident that a deeper understanding of the tumor microenvironment (TME) is crucial. The TME serves a dual function, acting as a promoter of tumorigenesis while also orchestrating immunosuppression, thereby facilitating cancer progression and enabling immune evasion. Consequently, a comprehensive comprehension of the TME and its intricate involvement in the initiation, progression, and metastasis of NPC is imperative for the development of effective anticancer drugs. Moreover, given the complexity of TME and the inter-patient heterogeneity, personalized treatment should be designed to maximize therapeutic efficacy and circumvent drug resistance. This review aims to provide an in-depth exploration of the TME within the context of EBV-induced NPC, with a particular emphasis on its pivotal role in regulating intercellular communication and shaping treatment responses. Additionally, the review offers a concise summary of drug resistance mechanisms and potential strategies for their reversal, specifically in relation to chemoradiation therapy, targeted therapy, and immunotherapy. Furthermore, recent advances in clinical trials pertaining to NPC are also discussed.
Collapse
Affiliation(s)
- Huai Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanxian Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenji Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hongmin Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wangning Gu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Rachman A, Sari SR, Munandar A, Adham M, Hutajulu SH. Combining Nimotuzumab With Chemotherapy for Patients With Locally Advanced and Intermediate-Stage Nasopharyngeal Cancer: A Retrospective Comparison Study Using Five-Year, Real-World Survival Data. Cureus 2023; 15:e48804. [PMID: 38098929 PMCID: PMC10721233 DOI: 10.7759/cureus.48804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is the most prevalent geographically-specific head and neck cancer. Its incidence was high in the Asian population, especially in certain parts such as Southern China and South East Asia. Most patients with NPC are presented with intermediate-stage or locally advanced disease requiring chemoradiation as the primary treatment of choice. Epidermal Growth Factor Receptor (EGFR) was found overexpressed in most patients with NPC associated with poor prognosis making its inhibitor one of the most plausible treatment options in addition to chemoradiation. In EGFR-positive NPC patients, nimotuzumab, a humanized anti-EGFR monoclonal antibody will bind the extracellular domain of EGFR leading to tumor growth suppressions. This study's objective was to assess the real-world clinical efficacy of nimotuzumab for patients with intermediate-stage and locally advanced NPC when in combination with concurrent chemoradiation. METHODS This retrospective real-world study examined a sample of intermediate-stage and locally advanced NPC patients who were treated with or without adding nimotuzumab to concurrent chemoradiation at Dr. Cipto Mangunkusumo General Hospital in Indonesia from January 2009 to December 2017. The outcomes were patients' real-world five-year overall survival (rwOS) and progression-free survival (rwPFS) compared using Kaplan-Meier analysis and Cox proportional hazard models adjusting for age, gender, comorbidities, clinical staging, staging based on Tumor status (T), staging based on Nodes status (N), and types of radiotherapy. Results: A total of 407 patients were included in the analysis, 61 patients receiving concurrent nimotuzumab and chemoradiation and 346 patients receiving chemoradiation alone. Patients receiving concurrent nimotuzumab and chemoradiation tended to have less aggressive NPC than patients receiving chemoradiation alone. Multivariate-adjusted Cox models revealed that combining nimotuzumab with chemoradiation was associated with a statistically significant longer rwOS gain (hazard ratio (HR)=0.46 (95% CI: 0.26-0.82, p=0.008)) and a trend of longer rwPFS (hazard ratio (HR)=0.67 (95% CI: 0.41-1.09, p=0.109)) in comparison to chemoradiation alone. Conclusion: In this retrospective real-world study, concurrent nimotuzumab and chemoradiation usage was associated with a significant overall survival benefit than chemoradiation alone for intermediate-stage and locally advanced NPC patients. Hence, adding nimotuzumab to patients' chemoradiation should be considered in patients with intermediate-stage and locally advanced NPC.
Collapse
Affiliation(s)
- Andhika Rachman
- Internal Medicine, Dr. Cipto Mangunkusumo Hospital - Faculty of Medicine Universitas Indonesia, Jakarta, IDN
| | - Sakinah Rahma Sari
- Hematology and Medical Oncology, Dr. Cipto Mangunkusumo General Hospital - Faculty of Medicine Universitas Indonesia, Jakarta, IDN
| | - Arie Munandar
- Radiation Oncology, Dr. Cipto Mangunkusumo General Hospital - Faculty of Medicine Universitas Indonesia, Jakarta, IDN
| | - Marlinda Adham
- Otolaryngology - Head and Neck Surgery, Dr. Cipto Mangunkusumo General Hospital - Faculty of Medicine Universitas Indonesia, Jakarta, IDN
| | - Susanna H Hutajulu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Sardjito General Hospital, Yogyakarta, IDN
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, IDN
| |
Collapse
|
11
|
Zhou J, Jiang Z, Li Y, Shao X, Liao H. Cause of death during nasopharyngeal carcinoma survivorship: a population-based analysis. Front Oncol 2023; 13:1269118. [PMID: 37920157 PMCID: PMC10619912 DOI: 10.3389/fonc.2023.1269118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Background Recently, the survival rate of nasopharyngeal carcinoma (NPC) patients has improved greatly due to developments in NPC treatments. But cause-specific mortality in NPC patients remains unclear. This study aims to investigate the common causes of death in NPC patients. Methods Eligible patients with NPC were included from the Surveillance, Epidemiology, and End Results (SEER) database. Standardized mortality ratios(SMRs) were calculated to compare death rates in NPC patients with those in the general population. Results A total of 3475 patients with NPC were included, of whom 1696 patients died during the follow-up period. 52.83% of deaths were caused by NPC, followed by other cancers (28.13%) and non-cancer causes (18.46%). The proportion of patients who died of NPC decreased over survival time. Moreover, non-cancer causes of death increase from 12.94% to 51.22% over time after 10 years of diagnosis. Heart diseases was the most common non-cancer cause of death in NPC patients. Conclusions Although NPC remains the leading cause of death after NPC diagnosis, other non-NPC causes of death represent an increased number of death in NPC patients. These findings support the involvement of multidisciplinary care for follow-up strategy in NPC patients.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Zhenyu Jiang
- Department of Nephrology, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yunhao Li
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Xuwen Shao
- Department of Physical Examination Center, Zhejiang Xinda Hospital, Huzhou, China
| | - Haihong Liao
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| |
Collapse
|
12
|
Lao TD, Truong PK, Le TAH. Diagnostic Value of DAPK Methylation for Nasopharyngeal Carcinoma: Meta-Analysis. Diagnostics (Basel) 2023; 13:2926. [PMID: 37761293 PMCID: PMC10529083 DOI: 10.3390/diagnostics13182926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Methylation of DAPK has been reported to play a key role in the initiation and progression of nasopharyngeal cancer. However, there are differences between the studies on it. This meta-analysis was performed to evaluate the diagnostic value of DAPK promoter methylation for NPC. METHOD The study method involves the systematic research of eligible studies based on criteria. The frequency, odds ratios (OR), sensitivity as well as specificity with the corresponding 95% confidence intervals (CIs) were used to assess the effect sizes. RESULTS A total of 13 studies, including 1048 NPC samples and 446 non-cancerous samples, were used for the meta-analysis. The overall frequencies of DAPK methylation were 56.94% and 9.28% in NPC samples and non-cancerous samples, respectively. The association between DAPK methylation and risk of NPC was also confirmed by calculating the OR value which was 13.13 (95%CI = 54.24-40.72) based on a random-effect model (Q = 64.74; p < 0.0001; I2 = 81.47% with 95%CI for I2 = 69.39-88.78). Additionally, the study results suggest that testing for DAPK methylation in tissue samples or brushing may provide a promising method for diagnosing NPC. CONCLUSION This is the first meta-analysis that provided scientific evidence that methylation of the DAPK gene could serve as a potential biomarker for diagnosis, prognosis, and early screening of NPC patients.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Department of Pharmaceutical and Medical Biotechnology, Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam; (P.K.T.); (T.A.H.L.)
| | | | | |
Collapse
|
13
|
Iancu DCE, Fulga A, Vesa D, Stan C, Zenovia A, Bujoreanu F, Piraianu AI, Sarbu MI, Tatu AL. Insight on common forms of cutaneous head and neck carcinoma (Review). Mol Clin Oncol 2023; 18:28. [PMID: 36908978 PMCID: PMC9995598 DOI: 10.3892/mco.2023.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023] Open
Abstract
To improve the outcome and quality of life for patients with head and neck carcinoma, an increasing amount of research has been performed on the particularities of this type of cancer and its treatment methods. Starting from clinical aspects, including histology and imaging features, up-to-date studies from different parts of the world have determined new data leading to a better understanding of the mechanisms behind the disease and proposed new treatment protocols. The head and neck areas are predisposed to almost all skin neoplasms, most commonly those related to ultraviolet exposure. Squamous cell carcinoma and basal cell carcinoma account for almost 90% of non-melanoma skin cancers in this region; therefore, reviewing the literature on cutaneous carcinomas of the head and neck area and sharing particular aspects of their physiopathology are beneficial for a great number of patients.
Collapse
Affiliation(s)
- Doriana Cristea-Ene Iancu
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Ana Fulga
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Doina Vesa
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Constantin Stan
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Andrei Zenovia
- Department of Otorhinolaryngology, 'Cai Ferate' General Hospital, 800223 Galati, Romania
| | - Florin Bujoreanu
- Department of Dermatology, 'Sfanta Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania.,Multidisciplinary Integrative Center for Dermatologic Interface Research (MIC-DIR), 800179 Galati, Romania
| | - Alin Ionut Piraianu
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania.,Department of Forensic Medicine, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania
| | - Mihaela Ionela Sarbu
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Alin Laurentiu Tatu
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania.,Department of Otorhinolaryngology, 'Cai Ferate' General Hospital, 800223 Galati, Romania.,Department of Dermatology, 'Sfanta Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania.,Multidisciplinary Integrative Center for Dermatologic Interface Research (MIC-DIR), 800179 Galati, Romania
| |
Collapse
|
14
|
Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review. Cancers (Basel) 2023; 15:cancers15041174. [PMID: 36831517 PMCID: PMC9954362 DOI: 10.3390/cancers15041174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Recent advances in machine learning and artificial intelligence technology have ensured automated evaluation of medical images. As a result, quantifiable diagnostic and prognostic biomarkers have been created. We discuss radiomics applications for the head and neck region in this paper. Molecular characterization, categorization, prognosis and therapy recommendation are given special consideration. In a narrative manner, we outline the fundamental technological principles, the overall idea and usual workflow of radiomic analysis and what seem to be the present and potential challenges in normal clinical practice. Clinical oncology intends for all of this to ensure informed decision support for personalized and useful cancer treatment. Head and neck cancers present a unique set of diagnostic and therapeutic challenges. These challenges are brought on by the complicated anatomy and heterogeneity of the area under investigation. Radiomics has the potential to address these barriers. Future research must be interdisciplinary and focus on the study of certain oncologic functions and outcomes, with external validation and multi-institutional cooperation in order to achieve this.
Collapse
|
15
|
Lin B, Huang D, Gao F, Yang Y, Wu D, Zhang Y, Feng G, Dai T, Du X. Mechanisms of FLASH effect. Front Oncol 2022; 12:995612. [PMID: 36212435 PMCID: PMC9537695 DOI: 10.3389/fonc.2022.995612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a novel radiotherapy technology defined as ultra-high dose rate (≥ 40 Gy/s) radiotherapy. The biological effects of FLASH-RT include two aspects: first, compared with conventional dose rate radiotherapy, FLASH-RT can reduce radiation-induced damage in healthy tissue, and second, FLASH-RT can retain antitumor effectiveness. Current research shows that mechanisms of the biological effects of FLASH-RT are related to oxygen. However, due to the short time of FLASH-RT, evidences related to the mechanisms are indirect, and the exact mechanisms of the biological effects of FLASH-RT are not completely clear and some are even contradictory. This review focuses on the mechanisms of the biological effects of FLASH-RT and proposes future research directions.
Collapse
Affiliation(s)
- Binwei Lin
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan Huang
- Department of Radiology Mianyang Central Hospital, Mianyang, China
| | - Feng Gao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Yiwei Yang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Gang Feng
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Tangzhi Dai
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Xiaobo Du
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
16
|
Shi M, Du J, Shi J, Huang Y, Zhao Y, Ma L. Ferroptosis-related gene ATG5 is a novel prognostic biomarker in nasopharyngeal carcinoma and head and neck squamous cell carcinoma. Front Bioeng Biotechnol 2022; 10:1006535. [PMID: 36185455 PMCID: PMC9520473 DOI: 10.3389/fbioe.2022.1006535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), a subtype of head and neck squamous cell carcinoma (HNSCC), is a malignant tumor that originates in the mucosal epithelium of the nasopharynx. Ferroptosis plays a key role in tumor suppression, while its prognostic value and critical factors in NPC have not been further explored. We select the Cancer Genome Atlas (TCGA) HNSCC dataset and the Gene Expression Omnibus (GEO) dataset of NPC samples, and find that ferroptosis-related factor ATG5 shows a high expression level with poor overall survival (OS) in HNSCC and NPC samples and is positively correlated with PD-L1/PD-L2 expression (p < 0.05). Furthermore, ATG5 high expression HNSCC patients show poor efficacy and short survival after receiving immune checkpoint blockade therapy treatment (p < 0.05). Moreover, ATG5 is significantly positively correlated with G2M checkpoint pathway (ρSpearman = 0.41, p < 0.01), and G2M checkpoint inhibitor drugs have lower IC50 in HNSCC patients with high expression of ATG5 (p < 0.01), indicating the potential value of G2M inhibitors in HNSCC/NPC treatment. In summary, our study shows that ferroptosis-related factors play a key role in immune infiltration in NPC and HNSCC, and ATG5, as a key immune invasion-related ferroptosis-related factor, has the potential to be a novel prognostic biomarker and a potential target in therapy for NPC and HNSCC.
Collapse
Affiliation(s)
- Ming Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiangnan Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jingjing Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | | | - Yan Zhao
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen, China
- *Correspondence: Yan Zhao, ; Lan Ma,
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen, China
- *Correspondence: Yan Zhao, ; Lan Ma,
| |
Collapse
|
17
|
Zhong Q, Wang Z, Kang H, Wu R. Molecular mechanism of FBXW7-mediated ubiquitination modification in nasopharyngeal carcinoma cell proliferation in vitro and in vivo. Pathol Res Pract 2022; 244:154056. [PMID: 36989847 DOI: 10.1016/j.prp.2022.154056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Nasopharyngeal carcinoma (NPC) is a type of keratinizing squamous cell malignancy. Ubiquitination, a common protein posttranslational modification, participates in cancer development. This study sought to investigate the mechanism of F-box and WD repeat domain containing 7 (FBXW7) in NPC cell proliferation in vivo and in vitro. METHODS FBXW7, Homeobox A10 (HOXA10), and bone morphogenetic protein-2 (BMP2) expression levels in NPC tissues and cells were detected by RT-qPCR and Western blotting. Cell proliferation was assessed by cell counting kit-8 and colony formation assays. The binding of FBXW7 to HOXA10 and HOXA10 ubiquitination level were detected via co-immunoprecipitation and ubiquitination assay. Cells were treated with MG132 (the proteasome inhibitor), followed by the determination of HOXA10 ubiquitination and protein levels. The binding of HOXA10 to BMP2 was testified via dual-luciferase and chromatin immunoprecipitation assays. Collaborative experiments were performed to confirm the role of HOXA10 or BMP2 in FBXW7-mediated NPC cell proliferation. Xenograft tumor assay was performed to confirm the role of FBXW7/HOXA10/BMP2 in vivo. RESULTS FBXW7 was under-expressed, while HOXA10 and BMP2 were up-expressed in NPC tissues and cells. FBXW7 overexpression restricted NPC cell proliferation. Mechanically, FBXW7 bound to HOXA10 to promote ubiquitination-based degradation of HOXA10 and further reduced the binding of HOXA10 to the BMP2 promoter and inhibited BMP2 transcription. Overexpression of HOXA10 or BMP2 attenuated the role of FBXW7 overexpression in inhibiting NPC cell proliferation. FBXW7 overexpression reduced Ki67 positive rate and repressed tumor growth. CONCLUSION FBXW7 overexpression promoted HOXA10 ubiquitination-based degradation and further inhibited BMP2 transcription, consequently restricting NPC cell proliferation in vitro and in vivo.
Collapse
|
18
|
Li HL, Deng NH, He XS, Li YH. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark Res 2022; 10:52. [PMID: 35883139 PMCID: PMC9327212 DOI: 10.1186/s40364-022-00397-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast Asia and southern China. The Phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China.
| | - Yue-Hua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, P.R. China.
| |
Collapse
|
19
|
McKeon MG, Gallant JN, Kim YJ, Das SR. It Takes Two to Tango: A Review of Oncogenic Virus and Host Microbiome Associated Inflammation in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14133120. [PMID: 35804891 PMCID: PMC9265087 DOI: 10.3390/cancers14133120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Certain viruses, specifically, human papillomavirus (HPV) and Epstein–Barr virus (EBV), have been linked with the development of head and neck cancer. In this study, we review the mechanisms by which (these) viruses lead to cellular transformation and a chronic inflammatory state. Given that the head and neck host a rich microbiome (which itself is intrinsically linked to inflammation), we scrutinize the literature to highlight the interplay between viruses, cellular transformation, inflammation, and the local host microbiome in head and neck cancer. Abstract While the two primary risk factors for head and neck squamous cell carcinoma (HNSCC) are alcohol and tobacco, viruses account for an important and significant upward trend in HNSCC incidence. Human papillomavirus (HPV) is the causative agent for a subset of oropharyngeal squamous cell carcinoma (OPSCC)—a cancer that is impacting a rapidly growing group of typically middle-aged non-smoking white males. While HPV is a ubiquitously present (with about 1% of the population having high-risk oral HPV infection at any one time), less than 1% of those infected with high-risk strains develop OPSCC—suggesting that additional cofactors or coinfections may be required. Epstein–Barr virus (EBV) is a similarly ubiquitous virus that is strongly linked to nasopharyngeal carcinoma (NPC). Both of these viruses cause cellular transformation and chronic inflammation. While dysbiosis of the human microbiome has been associated with similar chronic inflammation and the pathogenesis of mucosal diseases (including OPSCC and NPC), a significant knowledge gap remains in understanding the role of bacterial-viral interactions in the initiation, development, and progression of head and neck cancers. In this review, we utilize the known associations of HPV with OPSCC and EBV with NPC to investigate these interactions. We thoroughly review the literature and highlight how perturbations of the pharyngeal microbiome may impact host-microbiome-tumor-viral interactions—leading to tumor growth.
Collapse
Affiliation(s)
- Mallory G. McKeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Jean-Nicolas Gallant
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Young J. Kim
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Correspondence: ; Tel.: +1-(615)-322-0322; Fax: +1-(615)-343-6160
| |
Collapse
|
20
|
Oral Mucositis Induced by Chemoradiotherapy in Head and Neck Cancer—A Short Review about the Therapeutic Management and the Benefits of Bee Honey. Medicina (B Aires) 2022; 58:medicina58060751. [PMID: 35744014 PMCID: PMC9227299 DOI: 10.3390/medicina58060751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives: Oral mucositis, a severe non-hematological complication, can be induced by chemoradiotherapy. It is associated with severe local dysfunction, severely affecting the patient’s quality of life; it increases the risk of oral infections and interrupts oncological treatment, thus prolonging the duration and cost of hospitalization. Besides all of the agents used in the prevention and treatment of oral mucositis induced by oncological treatment, can there be found an easier one to administer, with an effective preparation, high addressability, both for adults and paediatric patients, without side effects, and at the same time cheap and easy to purchase? The aim of the present paper is to demonstrate the existence of this product, which is available to everyone, having multiple benefits. Materials and Methods: For the purpose of writing this article, materials were searched in electronic databases in between 2019 and 2021, taking into consideration papers where authors have demonstrated the effectiveness of this product through its topical or systemic use. Results: Numerous studies have highlighted the benefits of honey on oral mucositis. Through its analgesic, anti-inflammatory, anti-cancerous and antibacterial action, honey has proved to have a major impact on the patient’s quality of life and nutritional status by promoting tissue epithelialization and healing of the chemoradiotherapy-induced lesions. Conclusions: Superior to many natural agents, bee honey can be successfully used in both preventing and treating oral mucositis. There are currently numerous studies supporting and recommending the use of bee honey in the management of this oncological toxicity.
Collapse
|
21
|
Effects of CIK Cell Therapy Combined with Camrelizumab on the Quality of Life in Patients with Nasopharyngeal Carcinoma and Analysis of Prognostic Factors. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5655009. [PMID: 35586106 PMCID: PMC9110146 DOI: 10.1155/2022/5655009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/06/2023]
Abstract
Objective To investigate the effects of CIK (cytokine-induced killer) cell therapy combined with camrelizumab on the quality of life in patients with nasopharyngeal carcinoma and prognostic factors. Methods In this retrospective study, the materials of 80 patients with nasopharyngeal carcinoma treated in our hospital (February 2017-February 2019) were retrospectively analyzed, and they were equalized into experimental group (n = 40) and control group (n = 40) according to the order of admission. Both groups received 200 mg of camrelizumab on day 1 combined with 10 mg of anrotinib from day 2 to day 4. The patients received the above program every 3 weeks and 4 treatment cycles. The experimental group also received CIK cell therapy simultaneously. The patients' quality of life, immune indexes, local control, metastasis, and survival rate were compared between the two groups, and the prognostic factors were analyzed by logistic analysis. Results Compared with the control group, the experimental group achieved much higher scores of physical well-being (18.38 ± 2.31), social/family well-being (16.40 ± 2.24), emotional well-being (15.35 ± 2.30), functional well-being (17.30 ± 2.20), and head and neck cancer subscale (15.40 ± 2.01, P < 0.001) and eminently better immune indexes (P < 0.001) after treatment. During the 24-month follow-up, there were 2 recurrent cases (5.0%) and 2 cases (5.0%) with distant metastasis among the 40 patients in the experimental group; there were 8 recurrent cases (20.0%) and 7 cases (17.5%) with distant metastasis among the 40 patients in the control group. In the experimental group, the median survival period was 18 months and the 2-year survival rate was 97.5% (39/40). In the control group, the median survival period was 14 months and the 2-year survival rate was 85.0% (34/40). Among the 80 patients, 7 cases (8.75%) died and 73 cases (91.25%) survived. After conducting the single-factor analysis, remarkable differences in the cases of IV stage, quality of life after treatment, and immune indexes after treatment between the survival group and the death group were observed (P < 0.05). According to the multiple-factor analysis, the clinical stage and immune indexes were identified as the prognostic factors. Conclusion CIK cell therapy combined with camrelizumab can enhance the life quality and immune function of the patients with nasopharyngeal carcinoma, thus improving their prognoses.
Collapse
|
22
|
Lee SW, Yang CC, Lai HY, Tsai HH, Yeh CF, Kuo YH, Kang NW, Chen TJ, Chang SL. Roundabout Guidance Receptor 1 Is an Emerging Prognostic Biomarker for Nasopharyngeal Carcinoma. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221113244. [PMID: 35898392 PMCID: PMC9310334 DOI: 10.1177/11795549221113244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharynx with high morbidity and mortality in Southeast Asia and south of China. Roundabout guidance receptor 1 (ROBO1) can regulate axonogenesis (axon-like protrusion), which may play an important role in migration. However, the roles of ROBO1 in NPC have not been clarified. Methods: A comparative analysis employing the NPC transcriptome (GSE12452) and the axonogenesis-related genes (GO: 0050772) was performed. In total, 124 tissue blocks from patients primarily diagnosed as NPC (1993-2002) were examined using immunohistochemical staining. The connections between clinicopathological variables and protein immunoexpression were analyzed by Pearson’s chi-square test. The Kaplan–Meier method with a log-rank test was employed to plot survival curves. Multivariate analysis was performed using the Cox proportional hazards model to identify independent prognostic biomarker. Results: According to transcriptome analysis, we found that ROBO1 is significantly highly expressed in NPC tissues compared with normal tissues. The immunohistochemistry (IHC) staining showed that high expression of ROBO1 was significantly related to primary tumor (T1T2 and T3T4) ( P = .024), nodal metastasis status (N0N1 and N2N3) ( P = .030), stage (I-II and III-IV) ( P = .019), and histological grade (keratinizing, non-keratinizing, and undifferentiated) ( P = .065). Importantly, NPC patients with high ROBO1 expression had poorer disease-specific survival (DSS) ( P = .0001), distal metastasis-free survival (DMeFS) ( P < .0001), and local recurrence-free survival (LRFS) ( P = .0001) compared with NPC patients with low ROBO1 expression through the uni-/multivariate and the Kaplan–Meier survival analyses. Conclusion: Our report indicates that ROBO1 might be a potential prognostic biomarker for NPC.
Collapse
Affiliation(s)
- Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, Tainan
| | - Hsin-Hwa Tsai
- Department of Medical Research, Chi Mei Medical Center, Tainan
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, Tainan
| | - Cheng-Fa Yeh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan
- College of Pharmacy and Science, Chia Nan University, Tainan
| | - Nai-Wen Kang
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan
| | - Tzu-Ju Chen
- Department of Pet care and grooming, Chung Hwa University of Medical Technology, Tainan
- Department of Clinical Pathology, Chi-Mei Medical Center, Tainan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung
| | - Shih-Lun Chang
- Department of Pet care and grooming, Chung Hwa University of Medical Technology, Tainan
- Department of Otolaryngology, Chi Mei Medical Center, Tainan
| |
Collapse
|