1
|
Zhang Y, Wen Y, Nie J, Wang T, Wang G, Gao Q, Cao Y, Wang H, Qi S, Xie S. MYEF2: an immune infiltration-related prognostic factor in IDH-wild-type glioblastoma. Aging (Albany NY) 2023; 15:7760-7780. [PMID: 37556355 PMCID: PMC10457068 DOI: 10.18632/aging.204939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
Glioblastoma (GBM) is the most malignant and prevalent primary brain tumor. In this study, weighted gene coexpression network analysis (WGCNA) was performed to analyze RNA binding protein (RBP) expression data from The Cancer Genome Atlas (TCGA) for the IDH-wild type GBM cohort. The CIBERSORT algorithm quantified the cellular composition of immune cells and was used to identify key modules associated with CD8+ T cell infiltration. Coexpression networks analysis and protein-protein interaction (PPI) network analysis was used to filter out central RBP genes. Eleven RBP genes, including MYEF2, MAPT, NOVA1, MAP2, TUBB2B, CDH10, TTYH1, PTPRZ1, SOX2, NOVA2 and SCG3, were identified as candidate CD8+ T cell infiltration-associated central genes. A Cox proportional hazards regression model and Kaplan-Meier analysis were applied to identify candidate biomarkers. MYEF2 was selected as a prognostic biomarker based on the results of prognostic analysis. Flow Cytometric Analysis indicated that MYEF2 expression was negatively correlated with dysfunctional CD8+ T cell markers. Kaplan-Meier survival analysis (based on IHC staining) revealed that GBM patients with elevated MYEF2 expression have a better prognosis. Knockdown of MYEF2 in GBM cells via in vitro assays was observed to promote cell proliferation and migration. Our study suggests that MYEF2 expression negatively correlates with T cell exhaustion and tumor progression, rendering it a potentially valuable prognostic biomarker for GBM.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jing Nie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Tong Wang
- Department of Neurosurgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang 621000, Sichuan, PR China
| | - Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Qiaoping Gao
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Yongfu Cao
- Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, PR China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Sidi Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| |
Collapse
|
2
|
Effects of Resistance Training on Oxidative Stress Markers and Muscle Damage in Spinal Cord Injured Rats. BIOLOGY 2021; 11:biology11010032. [PMID: 35053030 PMCID: PMC8772953 DOI: 10.3390/biology11010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/24/2023]
Abstract
Simple Summary Spinal Cord Injury is a devastating condition that compromises the individual’s health, quality of life and functional independence. Rats submitted to Spinal Cord Injury were evaluated after four weeks of resistance training. Analyses of levels of muscle damage and oxidative stress surgery were performed. Resistance training demonstrated increase antioxidative activity while decreased oxidative damage in injured rats, in addition to having presented changes in the levels of muscle damage in that same group. The results highlight that resistance training promoted a decrease in oxidative stress and a significant response in muscle damage markers. Abstract Background: Spinal cord injury (SCI) is a condition that affects the central nervous system, is characterized by motor and sensory impairments, and impacts individuals’ lives. The objective of this study was to evaluate the effects of resistance training on oxidative stress and muscle damage in spinal cord injured rats. Methodology: Forty Wistar rats were selected and divided equally into five groups: Healthy Control (CON), Sham (SHAM) SCI Untrained group (SCI-U), SCI Trained group (SCI- T), SCI Active Trained group (SCI- AT). Animals in the trained groups were submitted to an incomplete SCI at T9. Thereafter, they performed a protocol of resistance training for four weeks. Results: Significant differences in muscle damage markers and oxidative stress in the trained groups, mainly in SCI- AT, were found. On the other hand, SCI- U group presented higher levels of oxidative stress and biomarkers of LDH and AST. Conclusion: The results highlight that resistance training promoted a decrease in oxidative stress and a significative response in muscle damage markers.
Collapse
|
3
|
The Preventive Effect of Cardiac Sympathetic Denervation Induced by 6-OHDA on Myocardial Ischemia-Reperfusion Injury: The Changes of lncRNA/circRNAs-miRNA-mRNA Network of the Upper Thoracic Spinal Cord in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2492286. [PMID: 34880964 PMCID: PMC8648479 DOI: 10.1155/2021/2492286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
In this study, we investigated whether chemical 6-hydroxydopamine (6-OHDA) stimuli caused cardiac sympathetic denervation (SD), and we analyzed gene expression profiles to determine the changes in the lncRNA/circRNAs-miRNA-mRNA network in the affected spinal cord segments to identify putative target genes and molecular pathways in rats with myocardial ischemia–reperfusion injury (MIRI). Our results showed that cardiac sympathetic denervation induced by 6-OHDA alleviated MIRI. Compared with the ischemia reperfusion (IR, MIRI model) group, there were 148 upregulated and 51 downregulated mRNAs, 165 upregulated and 168 downregulated lncRNAs, 70 upregulated and 52 downregulated circRNAs, and 12 upregulated and 11 downregulated miRNAs in the upper thoracic spinal cord of the SD-IR group. Furthermore, we found that the differential genes related to cellular components were mainly enriched in extracellular and cortical cytoskeleton, and molecular functions were mainly enriched in chemokine activity. Pathway analysis showed that the differentially expressed genes were mainly related to the interaction of cytokines and cytokine receptors, sodium ion reabsorption, cysteine and methionine metabolism, mucoglycan biosynthesis, cGMP-PKG signaling pathway, and MAPK signaling pathway. In conclusion, the lncRNA/circRNAs-miRNA-mRNA networks in the upper thoracic spinal cord play an important role in the preventive effect of cardiac sympathetic denervation induced by 6-OHDA on MIRI, which offers new insights into the pathogenesis of MIRI and provides new targets for MIRI.
Collapse
|